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Ray tracer measures radiance along a ray
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How do we efficiently detect what 
a ray hits?
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Review: ray-triangle intersection
▪ Find ray-plane intersection
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▪ Determine if point of intersection is within triangle

N

T(o+ td) = c

r(t) = o+ td
ray origin normalized ray direction

Parametric equation of a ray:

Plug equation for ray into implicit plane equation:
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Solve for t corresponding to intersection point:
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Review: ray-triangle intersection

5

▪ Parameterize triangle given by vertices                           using 
barycentric coordinates  

p0,p1,p2

▪ Can think of a triangle as an affine map of the unit triangle

p0,p1,p2 p0,p1,p2

p0,p1,p2

u

v

1

1
f(u, v) = p0 + u(p1 � p0) + v(p2 � p0)

f(u, v) = (1� u� v)p0 + up1 + vp2
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Ray-triangle intersection
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�1(o� p0)                 transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be 
orthogonal to plane

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t: ⇥
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Ray-primitive queries

Given primitive p:  

p.intersect(r)  returns value of t corresponding to the point of 
intersection with ray r 

p.bbox() returns axis-aligned bounding box of the primitive

7

tri.bbox():+
+++tri_min+=+min(p0,+min(p1,+p2))+
+++tri_max+=+max(p0,+max(p1,+p2))+
+++return+bbox(tri_min,+tri_max)+
++++++++++++
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Ray-axis-aligned-box intersection
What is ray’s closest/farthest intersection with axis-aligned box?
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x

d

x
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Find intersection of ray with all 
planes of box:

Math simplifies greatly since plane is 
axis aligned (consider x=x0 plane in 2D):

Figure shows intersections with x=x0 and x=x1 planes. 
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Ray-axis-aligned-box intersection
Compute intersections with all planes, take intersection of tmin/tmax intervals
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Note:  tmin < 0

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1
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tmax

Intersections with x planes Intersections with y planes Final intersection result

How do we know when the ray misses the box?
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Ray-scene intersection
Given a scene defined by a set of N primitives and a ray r, find the 
closest point of intersection of r with the scene
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p_closest+=+NULL+
t_closest+=+inf+
for+each+primitive+p+in+scene:+
+++t+=+p.intersect(r)+
+++if+t+>=+0+&&+t+<+t_closest:+
++++++t_closest+=+t+
++++++p_closest+=+p+
++++++++++++

“Find the first primitive the ray hits”

O(N)Complexity:
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A simpler problem
▪ Imagine I have a set of integers S 

▪ Given a new integer k, find the element in S that is closest to k:
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10++++123++++20++++100++++6++++25++++64++++11++++200+++30+++++

6++++10++++11++++20++++25++++30++++64++++100++++123++++200++++

Example: k=18

Sort integers:

How would you perform a modified binary search?
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Assignment 2, Part II is out!
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Assignment 2, Part II is out!
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Assignment 2, Part II is out!

How do we organize scene primitives to 
enable fast ray-scene intersection queries?
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Simple case

13

o,d

o,d

Ray misses bounding box of all primitives in scene 
O(1) cost: requires 1 ray-box test
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Another (should be) simple case
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o,d

o,d
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Bounding volume hierarchy (BVH)
▪ Interior nodes: 

- Represents subset of primitives in scene 
- Stores aggregate bounding box for all primitives in subtree 

▪ Leaf nodes: 
- Contain list of primitives
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Left: two different BVH 
organizations of the same 
scene containing 22 primitives.  

Is one BVH better than the 
other?
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Another BVH example 
▪ BVH partitions each node’s primitives into disjoints sets 

- Note: The sets can still be overlapping in space (below: child 
bounding boxes may overlap in space) 

16
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Ray-scene intersection using a BVH
struct+BVHNode+{+
+++bool+leaf;+
+++BBox+bbox;+
+++BVHNode*+child1;+
+++BVHNode*+child2;+
+++Primitive*+primList;+
};+

struct+ClosestHitInfo+{+
+++Primitive+prim;+
+++float+min_t;+
};+

void+find_closest_hit(Ray*+ray,+BVHNode*+node,+ClosestHitInfo*+closest)+{+

+++if+(!intersect(ray,+nodeV>bbox)+||+(closest+point+on+box+is+farther+than+closest.min_t))+
++++++return;+

+++if+(nodeV>leaf)+{+
++++++for+(each+primitive+p+in+nodeV>primList)+{+
+++++++++(hit,+t)+=+intersect(ray,+p);+
+++++++++if+(hit+&&+t+<+closest.min_t)+{+
++++++++++++closest.prim+=+p;+
++++++++++++closest.min_t+=+t;+
+++++++++}+
++++++}+
+++}+else+{+

+find_closest_hit(ray,+nodeV>child1,+closest);+
++++++find_closest_hit(ray,+nodeV>child2,+closest);+
+++}+
} 17

How could this occur?

node

child1
child2
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Improvement: “front-to-back” traversal

void+find_closest_hit(Ray*+ray,+BVHNode*+node,+ClosestHitInfo*+closest)+
{+

+++if+(nodeV>leaf)+{+
++++++for+(each+primitive+p+in+nodeV>primList)+{+
+++++++++(hit,+t)+=+intersect(ray,+p);+
+++++++++if+(hit+&&+t+<+closest.min_t)+{+
++++++++++++closest.prim+=+p;+
++++++++++++closest.min_t+=+t;+
+++++++++}+
++++++}+
+++}+else+{+
++++++(hit1,+min_t1)+=+intersect(ray,+nodeV>child1V>bbox);+
++++++(hit2,+min_t2)+=+intersect(ray,+nodeV>child2V>bbox);+

++++++NVHNode*+first+=+(min_t1+<=+min_t2)+?+child1+:+child2;+
++++++NVHNode*+second+=+(min_t1+<=+min_t2)+?+child2+:+child1;+

++++++find_closest_hit(ray,+first,+closest);+
++++++if+(second+child’s+min_t+is+closer+than+closest.min_t)+++
+++++++++find_closest_hit(ray,+second,+closest);+
+++}+
}

18

“Front to back” traversal. Traverse to 
closest child node first. Why? 

node

child1

child2

Invariant: only call find_closest_hit() if ray intersects bbox 
of node.
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Another type of query: any hit
Sometimes it’s useful to know if the ray hits ANY primitive in the 
scene at all (don’t care about distance to first hit)

19

bool+find_any_hit(Ray*+ray,+BVHNode*+node)+{+

+++if+(!intersect(ray,+nodeV>bbox))+
++++++return+false;+

+++if+(nodeV>leaf)+{+
++++++for+(each+primitive+p+in+nodeV>primList)+{+
+++++++++(hit,+t)+=+intersect(ray,+p);+
+++++++++if+(hit)+
++++++++++++return+true;+
+++}+else+{+

+return+(+find_closest_hit(ray,+nodeV>child1,+closest)+||+
+++++++++++++++find_closest_hit(ray,+nodeV>child2,+closest)+);+
+++}+
}

Interesting question of which child to enter 
first. How might you make a good decision? 
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For a given set of primitives, there are 
many possible BVHs 

(2N-2 ways to partition N primitives into two groups) 

How do we build a high-quality BVH?

20
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How would you partition these triangles 
into two groups?

21
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What about these?

22
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Intuition about a “good” partition?

23

Partition into child nodes with equal numbers of primitives

Better partition 
Intuition: want small bounding boxes (minimize overlap between children, avoid empty space)
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What are we really trying to do?
A good partitioning minimizes the cost of finding the closest 
intersection of a ray with primitives in the node.

24

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere                            is the cost of ray-primitive 
intersection for primitive i in the node.                

(Common to assume all primitives have the same cost)
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Cost of making a partition

25

The expected cost of ray-node intersection, given that the node’s 
primitives are partitioned into child sets A and B is:

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data, bbox check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees

C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

NA = |A|, NB = |B|Where: 
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Estimating probabilities
▪ For convex object A inside convex object B, the probability 

that a random ray that hits B also hits A is given by the ratio 
of the surface areas SA and SB of these objects.

26

P (hitA|hitB) =
SA

SB

Surface area heuristic (SAH):

Assumptions of the SAH (may not hold in practice): 
- Rays are randomly distributed 
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect
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Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions 

- Choose an axis 
- Choose a split plane on that axis 
- Partition primitives by the side of splitting plane their centroid lies 
- 2N-2 possible splitting positions for node with N primitives. (Why?)

27
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Efficiently implementing partitioning
▪ Efficient modern approximation: split spatial extent of 

primitives into B buckets (B is typically small: B < 32) 

28

b0 b1 b2 b3 b4 b5 b6 b7

For+each+axis:+x,y,z:+
+++initialize+buckets+
+++For+each+primitive+p+in+node:+
++++++b+=+compute_bucket(p.centroid)+
++++++b.bbox.union(p.bbox);+
++++++b.prim_count++;+
+++For+each+of+the+BV1+possible+partitioning+planes+evaluate+SAH+
Execute+lowest+cost+partitioning+found+(or+make+node+a+leaf)
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Troublesome cases

29

All primitives with same centroid (all 
primitives end up in same partition)

All primitives with same bbox (ray 
often ends up visiting both partitions) 
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Primitive-partitioning acceleration 
structures vs. space-partitioning structures
▪ Primitive partitioning (bounding 

volume hierarchy): partitions node’s 
primitives into disjoint sets (but sets 
may overlap in space) 

▪ Space-partitioning (grid, K-D tree) 
partitions space into disjoint regions 
(primitives may be contained in 
multiple regions of space) 

30



 CMU 15-462/662, Spring 201631

▪ Recursively partition space via axis-aligned partitioning planes 
- Interior nodes correspond to spatial splits (still correspond to spatial volume) 
- Node traversal can proceed in front-to-back order (unlike BVH, can terminate search 

after first hit is found). 
- Intuition: partitions curve out empty space (construction of K-D tree may produce 

more tree nodes than primitives depending on ratio of                 and                 )

K-D tree

B

A

A

B C

C

D

E F

D E

F

C = Ctrav +
SA

SN
NACisect +

SA

SN
NBCisectC = Ctrav +

SA

SN
NACisect +

SA

SN
NBCisect
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Challenge: objects overlap multiple nodes
▪ Want node traversal to proceed in front-to-back order so traversal can 

terminate search after first hit found 

32

B

A

A

B C

C

D

E F

D E

F

Triangle 1 overlaps multiple nodes. 

Ray hits triangle 1 when in highlighted 
leaf cell. 

But intersection with triangle 2 is closer! 
(Haven’t traversed to that node yet)

1

2

Solution: require primitive intersection 
point to be within current leaf node. 

(primitives may be intersected multiple 
times by same ray *)

* Mailboxing can be used to avoid repeated intersections 
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Uniform grid

▪ Partition space into equal sized volumes 
(“voxels”) 

▪ Each grid cell contains primitives that 
overlap voxel. (very cheap to construct 
acceleration structure) 

▪ Walk ray through volume in order 
- Very efficient implementation 

possible (think: 3D line rasterization) 

- Only consider intersection with 
primitives in voxels the ray intersects

33
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What should the grid resolution be?

34

Too few grids cell: degenerates to 
brute-force approach

Too many grid cells: incur significant cost 
traversing through cells with empty space
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Heuristic
▪ Choose number of voxels ~ total number of primitives

35

(constant prims per voxel — assuming uniform distribution of primitives)

O(
3
p
N)Intersection cost: 
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Uniform distribution of primitives

36

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are 
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Terrain / height fields:

Grass:

Example credit: Pat Hanrahan

[Image credit: Misuba Renderer]

[Image credit: www.kevinboulanger.net/grass.html]
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Uniform grid cannot adapt to non-uniform 
distribution of geometry in scene
(Unlike K-D tree, location of spatial partitions is not dependent on scene geometry)

37

“Teapot in a stadium problem”
Scene has large spatial extent. 

Contains a high-resolution object that 
has small spatial extent (ends up in one 
grid cell)

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!
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Non-uniform distribution of geometric detail

38

[Image credit: Pixar]
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Quad-tree / octree

Quad-tree: nodes have 4 children (partitions 2D space) 
Octree: nodes have 8 children (partitions 3D space)

39

Like uniform grid: easy to build (don’t 
have to choose partition planes) 

Has greater ability to adapt to location of 
scene geometry than uniform grid. 

But lower intersection performance than 
K-D tree (only limited ability to adapt) 
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Summary of accelerating geometric queries: 
choose the right structure for the job
▪ Primitive vs. spatial partitioning: 

- Primitive partitioning: partition sets of objects 
- Bounded number of BVH nodes, simpler to update if primitives in scene change position 

- Spatial partitioning: partition space 
- Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times   

▪ Adaptive structures (BVH, K-D tree) 
- More costly to construct  (must be able to amortize construction over many geometric 

queries) 
- Better intersection performance under non-uniform distribution of primitives 

▪ Non-adaptive accelerations structures (uniform grids) 
- Simple, cheap to construct 
- Good intersection performance if scene primitives are uniformly distributed 

▪ Many, many combinations thereof 

40
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The visibility problem
▪ What scene geometry is visible at each screen sample? 

- What scene geometry projects into a screen pixel? (coverage) 

- Which geometry is visible from the camera at that pixel? (occlusion)

41

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

x/z
-z axis

x-axis
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Basic rasterization algorithm
Sample = 2D point 
Coverage: 2D triangle/sample tests  (does projected triangle cover 2D sample point) 
Occlusion: depth buffer

42

initialize+z_closest[]+to+INFINITY+++++++++++++//+store+closestVsurfaceVsoVfar+for+all+samples++
initialize+color[]+++++++++++++++++++++++++++++//+store+scene+color+for+all+samples+
for+each+triangle+t+in+scene:++++++++++++++++++//+loop+1:+triangles+
++++t_proj+=+project_triangle(t)+
++++for+each+2D+sample+s+in+frame+buffer:++++++//+loop+2:+visibility+samples+
++++++++if+(t_proj+covers+s)++
++++++++++++compute+color+of+triangle+at+sample+
++++++++++++if+(depth+of+t+at+s+is+closer+than+z_closest[s])+
++++++++++++++++update+z_closest[s]+and+color[s]

“Given a triangle, find the samples it covers” 
(finding the samples is relatively easy since they are 
distributed uniformly on screen) 

But what from this lecture do modern hierarchical 
rasterization algorithms remind you of? 
(for each tile of image, if triangle overlaps tile, check all 
samples in tile)
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The visibility problem (described differently)
▪ In terms of casting rays from the camera: 

- What scene primitive is hit by a ray originating from a point on the virtual sensor 
and traveling through the aperture of the pinhole camera? (coverage) 

- What primitive is the first hit along that ray? (occlusion)

43

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

o,do,d
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Basic ray casting algorithm
Sample = a ray in 3D 
Coverage: 3D ray-triangle intersection tests  (does ray “hit” triangle) 
Occlusion: closest intersection along ray

44

initialize+color[]+++++++++++++++++++++++++++++++++//+store+scene+color+for+all+samples+
for+each+sample+s+in+frame+buffer:+++++++++++++++++//+loop+1:+visibility+samples+(rays)+
++++r+=+ray+from+s+on+sensor+through+pinhole+aperture+
++++r.min_t+=+INFINITY+++++++++++++++++++++++++++++//+only+store+closestVsoVfar+for+current+ray+
++++r.tri+=+NULL;+
++++for+each+triangle+tri+in+scene:++++++++++++++++++//+loop+2:+triangles+
++++++++if+(intersects(r,+tri))+{++++++++++++++++++++//+3D+rayVtriangle+intersection+test+
++++++++++++if+(intersection+distance+along+ray+is+closer+than+r.min_t)+
++++++++++++++++update+r.min_t+and+r.tri+=+tri;+
++++++++}+
++++color[s]+=+compute+surface+color+of+triangle+r.tri+at+hit+point++

Compared to rasterization approach: just a reordering of the loops!  (+ math in 3D) 
“Given a ray, find the closest triangle it hits” 

As we saw today, the brute force “for each triangle” loop is typically accelerated using an 
acceleration structure.  (A rasterizer’s “for each sample” inner loop is not just a loop over all 
screen samples either.)
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Basic rasterization vs. ray casting
▪ Rasterization: 

- Proceeds in triangle order (never have to store in entire scene, naturally supports 
unbounded size scenes) 

- Store depth buffer (random access to regular structure of fixed size) 

▪ Ray casting: 
- Proceeds in screen sample order 

- Never have to store closest depth so far for the entire screen (just current ray) 
- Natural order for rendering transparent surfaces (process surfaces in the order the 

are encountered along the ray: front-to-back or back-to-front) 
- Must store entire scene (random access to irregular structure of variable size: depends 

on complexity and distribution of scene) 

▪ Modern high-performance implementations of rasterization 
and ray-casting embody very similar techniques 
- Hierarchies of rays/samples 
- Hierarchies of geometry

45
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Ray-scene intersection is a general visibility primitive: 
What object is visible along this ray?

46

(In contrast, rasterization is a highly-specialized solution for computing visibility for 
a set of uniformly distributed rays originating from the same point.)

Virtual 
Sensor

(x,z)

What object is visible to the camera? 

What light sources are visible from a point 
on a surface (Is a surface in shadow?) 

What reflection is visible on a surface?
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What you should know:
▪ Compute ray-triangle intersection, including checking whether the ray passed through the 

inside of the triangle. 

▪ Compute ray - bounding box intersection 

▪ Construct a bounding box hierarchy for a given collection of objects. 

▪ Calculate traversal order of a bounding box hierarchy for a given ray. 

▪ What is the Surface Area Heuristic (SAH) and what goals is it trying to achieve? 

▪ Explain how to choose a bounding box partition using the SAH 

▪ Be able to distinguish between object-centric (primitive partitioning) acceleration structures 
and space-centric (space-partitioning) acceleration structures 

▪ Know the difference between these acceleration structures, how to build them, how to traverse 
them, and when to use each type: 

- bounding box and bounding sphere hierarchies 

- KD-trees 

- octrees 

- grids

47


