Lecture 17:

Accelerating Geometric
Queries

Computer Graphics
CMU 15-462/15-662, Spring 2016

Ray tracer measures radiance along a ray

,J
T ‘
o
| -
— —
T -

2 (MU 15-462/662, Spring 2016

How do we efficiently detect what
a ray hits?

U 15-462/662, Spring 2016

Review: ray-triangle intersection

® Find ray-plane intersection © P2

Parametric equation of a ray:
r(t) = o+ td
ray origin / \ normalized ray direction 1

Plug equation for ray into implicit plane equation: Po
N'x =c
N*(o+1td) =c
Solve for t corresponding to intersection point:
,_ C N1o
- NTd

m Determine if point of intersection is within triangle

4 (MU 15-462/662, Spring 2016

Review: ray-triangle intersection

m Parameterize triangle given by vertices po, P1, P2 using
barycentric coordinates

f(u,v) = (1 —u —v)po + up1 + vp2

m (Can think of a triangle as an affine map of the unit triangle

1

v = po + u(P1 — Po) + v(P2 — Po)

\/“ y

(MU 15-462/662, Spring 2016

Ray-triangle intersection

Plug parametric ray equation directly into equation for points on triangle:

Po +u(P1 — Po) +v(p2 — po) — o+ td

Solve foru, v, t: U
P1—Po P2—Po —d||v| =0-po
] |

M 7

M~ transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be

orthogonal to plane

P2

1 u

6 (MU 15-462/662, Spring 2016

Ray-primitive queries

Given primitive p:

p.intersect(r) returns value of t corresponding to the point of
intersection with rayr

p.bbox() returns axis-aligned bounding box of the primitive

tri.bbox():
tri min = min(p@, min(pl, p2))
tri max = max(p@, max(pl, p2))

return bbox(tri_min, tri_max)

7 (MU 15-462/662, Spring 2016

Ray-axis-aligned-box intersection

What is ray’s closest/farthest intersection with axis-aligned box?

Find intersection of ray with all
planes of box:

Nt (o+td) =

Math simplifies greatly since plane is
axis aligned (consider x=x plane in 2D):

NT=[1 o]
C = X
70 Lo — Ox
{ =
X0 X1 dX

Figure shows intersections with x=xo and x=x; planes.
8 (MU 15-462/662, Spring 2016

Ray-axis-aligned-box intersection

Compute intersections with all planes, take intersection of tyin/tmax intervals

tmaxE

Y1 Y1 timax
d d
o o
tmin
AN £ S
;Xo §X1 Note: Tmin <0 ;XO §X1 ;Xo §X1
Intersections with x planes Intersections with y planes Final intersection result

How do we know when the ray misses the box?

9 (MU 15-462/662, Spring 2016

Ray-scene intersection

Given a scene defined by a set of N primitives and a ray r, find the
closest point of intersection of r with the scene

“Find the first primitive the ray hits”

p closest = NULL
t closest = inf
for each primitive p in scene:
t = p.intersect(r)
if t >= 0 & t < t closest:
t closest =t
p closest p

Complexity: O (V)

10 (MU 15-462/662, Spring 2016

A simpler problem

B [magine | have a set of integers S
B Given a new integer k, find the element in S that is closest to k:

10 123 20 100 6 25 64 11 200 30

Example: k=18

Sort integers:

6 10 11 20 25 30 64 100 123 200

How would you perform a modified binary search?

1 (MU 15-462/662, Spring 2016

How do we organize scene primitives to
enable fast ray-scene intersection queries?

o X

12 (MU 15-462/662, Spring 2016

Simple case

AA

Ray misses bounding box of all primitives in scene
0(1) cost: requires 1 ray-box test

13 (MU 15-462/662, Spring 2016

Another (should be) simple case

Bounding volume hierarchy (BVH)

Interior nodes:

- Represents subset of primitives in scene

- Stores aggregate bounding box for all primitives in subtree
B Leafnodes:

- Contain list of primitives

/

3\ B
AL A Left: two different BVH
organizations of the same
A C scene containing 22 primitives.

/

Is one BVH better than the
other?

1,2,3 6,78, 12,13,14, 18,19,20, 1,2,3 6,78, 12,13,14, 18,19,20,
4,5 910,11 15,16,17 21,22 4,5 910,11 15,16,17 21,22
15 (MU 15-462/662, Spring 2016

Another BVH example

m BVH partitions each node’s primitives into disjoints sets

- Note: The sets can still be overlapping in space (below: child
bounding boxes may overlap in space)

%%YD'VAA =

16 (MU 15-462/662, Spring 2016

Ray-scene intersection using a BVH

struct BVHNode {
bool leaf; D> node
BBox bbox;
BVHNode* childl;
BVHNode* child2;
Primitive* primList;

b child2

W
struct ClosestHitInfo { child1 Zﬁ&
Primitive prim; Vf}f>

float min_t;

}s5
void find closest hit(Ray* ray, BVHNode* node, ClosestHitInfo* closest) {

if (!intersect(ray, node->bbox) || (closest point on box is farther than closest.min t))
return;

if (node->leaf) {
for (each primitive p in node->primList) {
(hit, t) = intersect(ray, p);
if (hit & t < closest.min_t) {
closest.prim = p;
closest.min_t = t;

How could this occur?

}

}
} else {

find _closest hit(ray, node->childl, closest);
find_closest hit(ray, node->child2, closest);

} 17 (MU 15-462/662, Spring 2016

Improvement: “front-to-back” traversal

>

Invariant: only call find_closest_ hit() if ray intersects bbox
of node.

void find_closest_hit(Ray* ray, BVHNode* node, ClosestHitInfo* closest) child2

{ ‘§b child % A

if (node->leaf) {
for (each primitive p in node->primList) {
(hit, t) = intersect(ray, p);
if (hit & t < closest.min_t) {
closest.prim = p;
closest.min_t = t;

}

}
} else {

(hitl, min_t1) = intersect(ray, node->childl->bbox);
(hit2, min_t2) = intersect(ray, node->child2->bbox);

NVHNode* first = (min_t1 <= min_t2) ? childl : child2;
NVHNode* second = (min_t1 <= min_t2) ? child2 : childi; “Front to back” traversal. Traverse to

find_closest_hit(ray, first, closest); closest child node first. Why7

if (second child’s min_t is closer than closest.min_t)
find_closest hit(ray, second, closest);

o

18 (MU 15-462/662, Spring 2016

Another type of query: any hit

Sometimes it’s useful to know if the ray hits ANY primitive in the
scene at all (don’t care about distance to first hit)

bool find _any_hit(Ray* ray, BVHNode* node) {

if (!intersect(ray, node->bbox))
return false;

if (node->leaf) {
for (each primitive p in node->primList) {
(hit, t) = intersect(ray, p);
if (hit)
return true;
} else {
return (find _closest_hit(ray, node->childl, closest) ||
find_closest_hit(ray, node->child2, closest));

Interesting question of which child to enter
first. How might you make a good decision?

19 (MU 15-462/662, Spring 2016

For a given set of primitives, there are
many possible BVHs

(2M-2 ways to partition N primitives into two groups)

How do we build a high-quality BVH?

20 (MU 15-462/662, Spring 2016

How would you partition these triangles
Into two groups?

‘A,' g Av ':A

What about these?

Intuition about a “good” partition?
Fye

Partition into child nodes with equal numbers of primitives

Better partition
Intuition: want small bounding boxes (minimize overlap between children, avoid empty space)

23 (MU 15-462/662, Spring 2016

What are we really trying to do?

A good partitioning minimizes the cost of finding the closest
intersection of a ray with primitives in the node.

If a node is a leaf node (no partitioning):

N
. Where Cisect(2) isthe cost of ray-primitive
() — C. 1sec
Z; isect (1) intersection for primitive i in the node.
7=

— NCigect (Common to assume all primitives have the same cost)

24 (MU 15-462/662, Spring 2016

Cost of making a partition

The expected cost of ray-node intersection, given that the node’s
primitives are partitioned into child sets A and B is:

C = Cirav + paCa +pBCB

(t1xv is the cost of traversing an interior node (e.g., load data, bbox check)

C A and C 1 are the costs of intersection with the resultant child subtrees
PA and PB arethe probability a ray intersects the bbox of the child nodes A and B

Primitive count is common approximation for child node costs:
C = CYt]raw - pANACisect + PB NB Cisect

Where: N4 = |A|, N = | B|

25 (MU 15-462/662, Spring 2016

Estimating probabilities

m For convex object A inside convex object B, the probability
that a random ray that hits B also hits A is given by the ratio
of the surface areas Sy and Sg of these objects.

P(hitA|hitB) = S—A
Sp
Surface area heuristic (SAH):
C = Ctrav | SA NACisect | SB NB Cisect
S'n S'n

Assumptions of the SAH (may not hold in practice):
— Rays are randomly distributed
— Rays are not occluded

26 (MU 15-462/662, Spring 2016

Implementing partitions

m (onstrain search for good partitions to axis-aligned spatial partitions
- Choose an axis

- Choose a split plane on that axis
- Partition primitives by the side of splitting plane their centroid lies
- 2N-2 possible splitting positions for node with N primitives. (Why?)

27 (MU 15-462/662, Spring 2016

Efficiently implementing partitioning

m Efficient modern approximation: split spatial extent of
primitives into B buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: Xx,y,z:
initialize buckets
For each primitive p in node:
b = compute_bucket(p.centroid)
b.bbox.union(p.bbox);
b.prim_count++;
For each of the B-1 possible partitioning planes evaluate SAH

Execute lowest cost partitioning found (or make node a leaf) ,
28 (MU 15-462/662, Spring 2016

Troublesome cases

All primitives with same centroid (all All primitives with same bhox (ray
primitives end up in same partition) often ends up visiting both partitions)

29 (MU 15-462/662, Spring 2016

Primitive-partitioning acceleration
structures vs. space-partitioning structures

B Primitive partitioning (bounding A
volume hierarchy): partitions node’s y
primitives into disjoint sets (but sets

may overlap in space) AA

m Space-partitioning (grid, K-D tree) Ay >
partitions space into disjoint regions \ 7

(primitives may be contained in 2 AQ
o (4
\Y%

multiple regions of space)

30 (MU 15-462/662, Spring 2016

K-D tree

B Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits (still correspond to spatial volume)
- Node traversal can proceed in front-to-back order (unlike BVH, can terminate search
after first hit is found).
- Intuition: partitions curve out empty space (construction of K-D tree may produce
more tree nodes than primitives depending on ratio of C';. and Cigect)

b
S ZER

31 (MU 15-462/662, Spring 2016

Challenge: objects overlap multiple nodes

® Want node traversal to proceed in front-to-back order so traversal can
terminate search after first hit found

* Mailboxing can be used to avoid repeated intersections

32

..................................

Triangle 1 overlaps multiple nodes.

Ray hits triangle 1 when in highlighted
leaf cell.

But intersection with triangle 2 is closer!
(Haven't traversed to that node yet)

Solution: require primitive intersection
point to be within current leaf node.

(primitives may be intersected multiple

times by same ray *)
(MU 15-462/662, Spring 2016

Uniform grid

® Partition space into equal sized volumes

D> (“voxels”)
/\ ' B Each grid cell contains primitives that
A overlap voxel. (very cheap to construct

“ acceleration structure)

‘.' = Walk ray through volume in order
— Very efficient implementation

I\

_—
-

S ﬁ possible (think: 3D line rasterization)

— Only consider intersection with
= .
; A |

'§b

primitives in voxels the ray intersects

33 (MU 15-462/662, Spring 2016

What should the grid resolution be?

Too few grids cell: degenerates to Too many grid cells: incur significant cost
brute-force approach traversing through cells with empty space

34 (MU 15-462/662, Spring 2016

Heuristic

m Choose number of voxels ~ total number of primitives
(constant prims per voxel — assuming uniform distribution of primitives)

Intersection cost: O(W)

35 (MU 15-462/662, Spring 2016

Uniform distribution of primitives

Terrain / height fields:

[Image credit: Misuba Renderer]

[Image credit: www.kevinboulanger.net/grass.html]

Example credit: Pat Hanrahan 36 CMU 15-462/662, Spring 2016

Uniform grid cannot adapt to non-uniform
distribution of geometry in scene

(Unlike K-D tree, location of spatial partitions is not dependent on scene geometry)

A

. “Teapotin a stadium problem”

Scene has large spatial extent.

| | . Contains a high-resolution object that
Q has small spatial extent (ends up in one
grid cell)

37 (MU 15-462/662, Spring 2016

Non-uniform distribution of geometric detail

-~
- & H
——————————
- -) . °‘ o »
P TN o
- .‘g. L3 ’ &\\‘o
» r\‘ -’-’V:
- F -~ Q i
T- . § r‘c
R - St & 15
« Y
- < v
‘ 5”:‘ ‘o.
.o.
- ~ - 4
— wi A T
- "‘: - '/ ‘.:.\ﬂo
- ' 8 _ ‘:":o.
> B ' . . (-‘-
: S5 »5$ SAS « S SASSSASSASHRNS

[Image credit: Pixar]

(MU 15-462/662, Spring 2016

Quad-tree / octree

Like uniform grid: easy to build (don't
have to choose partition planes)

Has greater ability to adapt to location of
scene geometry than uniform grid.

But lower intersection performance than
K-D tree (only limited ability to adapt)

Quad-tree: nodes have 4 children (partitions 2D space)

39

Octree: nodes have 8 children (partitions 3D space)

(MU 15-462/662, Spring 2016

Summary of accelerating geometric queries:
choose the right structure for the job

B Primitive vs. spatial partitioning:
- Primitive partitioning: partition sets of objects
- Bounded number of BVH nodes, simpler to update if primitives in scene change position
- Spatial partitioning: partition space
- Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times

® Adaptive structures (BVH, K-D tree)

= More costly to construct (must be able to amortize construction over many geometric
queries)

- Better intersection performance under non-uniform distribution of primitives

B Non-adaptive accelerations structures (uniform grids)
- Simple, cheap to construct
- Good intersection performance if scene primitives are uniformly distributed

® Many, many combinations thereof

40 (MU 15-462/662, Spring 2016

The visibility problem

B What scene geometry is visible at each screen sample?

- What scene geometry projects into a screen pixel? (coverage)

- Which geometry is visible from the camera at that pixel? (occlusion)

Virtual
Sensor

41CMU 15-462/662, Spring 2016

Basic rasterization algorithm

Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer

initialize z _closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|] // store scene color for all samples
for each triangle t in scene: // loop 1: triangles

t_proj = project_triangle(t)

for each 2D sample s in frame buffer: // loop 2: visibility samples

if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z _closest[s] and color|s]

“Given a triangle, find the samples it covers”
(finding the samples is relatively easy since they are
distributed uniformly on screen)

But what from this lecture do modern hierarchical
rasterization algorithms remind you of?

(for each tile of image, if triangle overlaps tile, check all
samples in tile)

42 (MU 15-462/662, Spring 2016

The visibility problem (described differently)

m |n terms of casting rays from the camera:

- What scene primitive is hit by a ray originating from a point on the virtual sensor
and traveling through the aperture of the pinhole camera? (coverage)

- What primitive is the first hit along that ray? (occlusion)

Camera
(0,0)

Virtual
Sensor

43 (MU 15-462/662, Spring 2016

Basic ray casting algorithm

Sample=arayin3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color|] // store scene color for all samples
for each sample s in frame buffer: // loop 1: visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY // only store closest-so-far for current ray
r.tri = NULL;
for each triangle tri in scene: // loop 2: triangles
if (intersects(r, tri)) { // 3D ray-triangle intersection test

if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;

}

color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops! (+ math in 3D)
“Given a ray, find the closest triangle it hits”

As we saw today, the brute force “for each triangle” loop is typically accelerated using an
acceleration structure. (A rasterizer’s “for each sample” inner loop is not just a loop over all
screen samples either.)

44 (MU 15-462/662, Spring 2016

Basic rasterization vs. ray casting

m Rasterization:

- Proceeds in triangle order (never have to store in entire scene, naturally supports
unbounded size scenes)

- Store depth buffer (random access to regular structure of fixed size)

m Ray casting:
- Proceeds in screen sample order

- Never have to store closest depth so far for the entire screen (just current ray)

- Natural order for rendering transparent surfaces (process surfaces in the order the
are encountered along the ray: front-to-back or back-to-front)

- Must store entire scene (random access to irreqular structure of variable size: depends
on complexity and distribution of scene)

m Modern high-performance implementations of rasterization
and ray-casting embody very similar techniques

- Hierarchies of rays/samples

- Hierarchies of geometry
45 (MU 15-462/662, Spring 2016

Ray-scene intersection is a general visibility primitive:
What object is visible along this ray?

What object is visible to the camera?

What light sources are visible from a point
on a surface (Is a surface in shadow?)

What reflection is visible on a surface?

Virtual
Sensor

(In contrast, rasterization is a highly-specialized solution for computing visibility for
a set of uniformly distributed rays originating from the same point.)
46 (MU 15-462/662, Spring 2016

What you should know:

Compute ray-triangle intersection, including checking whether the ray passed through the

inside of the triangle.

Compute ray - bounding box intersection

Construct a bounding box hierarchy for a given collection of objects.
Calculate traversal order of a bounding box hierarchy for a given ray.
What is the Surface Area Heuristic (SAH) and what goals is it trying to achieve?

Explain how to choose a bounding box partition using the SAH

Be able to distinguish between object-centric (primitive partitioning) acceleration structures

and space-centric (space-partitioning) acceleration structures

Know the difference between these acceleration structures, how to build them, how to traverse

them, and when to use each type:

- bounding box and bounding sphere hierarchies

= KD-trees
- octrees

- grids

47

(MU 15-462/662, Spring 2016

