Lecture 15:

Numerical Integration

(with a focus on Monte Carlo integration)

Computer Graphics
CMU 15-462/15-662, Spring 2016



Review: fundamental theorem of calculus

/ f(2)de = F(b) — F(a)
’ d
f(z) =

@F(@




Definite integral as “area under curve”

/a ' fla)da
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Simple case: constant function

deaz = (b—a)C
/

LI = x:b
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Affine function: f (x) —cr +d

[ s +1)(b - a)
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Piecewise affine function

Sum of integrals of individual affine components

[ e = 33 @i =2 (@) + i)
f(z)

To = a T1 T T3 Ty =0b
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Piecewise affine function

If N-1 segments are of equal length: » = i

n—1

[ s@de =53 (1) + flean

f(z) — (Z Fl:) + 5 (flao) + f(xn)))

1=1
press e ;
Weighted combination :__ A :
n— . €T :
of measurements. : Z; if (i) 5
1=
To = Q L1 T T3 rqs = b
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Polynomials?
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Aside: interpolating polynomials

Consider n+1 measurements of a function f(x)

f(ili‘()), f(xl)v f(iUz), S 7f(33n)

There is a unique degree < n polynomial that interpolates the points:

Note: /; () is 1at =; and 0 at lo()
all other measurement points
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Gaussian quadrature theorem

If /(x)is a polynomial of degree of up to 2n+1, then its integral over
[a,b] is computed exactly by a weighted combination of n+1
measurements in this range.

/abf(x)dx = Zn:Az'f(%') A; = /ab [i(z)dx

Where are these points?

Roots of degree n+1 polynomial ¢(x) where:

b
/ riq(zx)de =0 0<k<n
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Arbitrary function f(x)?

f(z)
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Trapezoidal rule

Approximate integral of f(x) by assuming function is piecewise linear
b—a

For equal length segments: . =

n—1
[ fayde = (Z Flai) + 5 (Flao) + f(évn)))

f(x)

ro = a X1 0, X3 T4 = b
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Trapezoidal rule

Consider cost and accuracy of estimateas n — oo (orh — 0)
Work: O(n)
Error can be shown to be: O(»?) = O(

f(z)

1
—)
(for f(x) with continuous second derivative)
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Integration in 2D

Consider integrating f(z, y)using the trapezoidal rule
(apply rule twice: when integratinginxand in y)

Errors add, so error still: O( h2) Must perform much more work in 2D to get

same error bound on integral!
InK-D, let N = »n*

1
Error goes as: O ( 5 /k)

But work is now: O(n?)
(n X n set of measurements)
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Recall: camera measurement equation from
last time

1 [t
Q = > / / / L(p" — p,t) cos* @ dpdp’ dt’
tO Alens Afilm

5D integral!

(Rendering requires computation of infinite dimensional integrals. Coming soon in class!)
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Monte Carlo Integration

Slides credit: a majority of these slides were created by Matt Pharr and Pat Hanrahan
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Monte Carlo numerical integration

So far we've discussed techniques that use
a fixed set of sample points (e.g., uniformly
spaced, or obtained by finding roots of
polynomial (Gaussian quadrature))

®  Estimate value of integral using random sampling of function !

- Value of estimate depends on random samples used

- But algorithm gives the correct value of integral “on average”

B Only requires function to be evaluated at random points on its domain

- Applicable to functions with discontinuities, functions that are

impossible to integrate directly

B Error of estimate is independent of the dimensionality of the integrand

- Depends on the number of random samples used: O(n'/?)

Recall previous trapezoidal rule example: O (n

(dropping the n for simplicity)
17
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Review: random variables

X random variable. Represents a distribution of
potential values

X ~ p(x) probability density function (PDF). Describes relative
probability of a random process choosing value

Uniform PDF: all values over a domain are equally likely

. . | ©_ ©
e.g., for an unbiased die - BRI
X takesonvalues1,2,3,4,5,6 ZTo\ o. —
p(1) = p(2) = p(3) = p(4) = p(5) = p(6) o o
\ F 4
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Discrete probability distributions

n discrete values z;

With probability p;

Requirements of a PDF: T
pi = 0

ZP@ =1
i=1
1

Six-sided die example: p; = -

Think: D; is the probability that a random measurement of _X will yield the value x;
X takes on the value ; with probability p;
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Cumulative distribution function (CDF)

(For a discrete probability distribution)

j
Cumulative PDF: P, = 'p,
1=1

where:
0< P, <1

P, =1
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How do we generate samples of a discrete
random variable (with a known PDF?)
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Sampling from discrete probability

distributions
To randomly select an event, ‘:D
select z; if

P1 <& P

T

Uniform random variable € [0, 1)
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Continuous probability distributions

Uniform distribution

(for random variable _X defined on [0,1] domain)

PDF p(z)

_PG) - Pl) 0 1
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Sampling continuous random variables
using the inversion method

Cumulative probability distribution function
P(x) = Pr(X < x)

Construction of samples:
Solve for z = P~ (¢)

Must know the formula for:
1. The integral of p(z)
2. The inverse function P~ (x)
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Relative density of probability

G iven. 17 of random variable taking on

value x over [0,2] domain

flx) =2 2€]0,2]

Compute PDF:

1:/02cf(a:)da:

— c(F(2) - F(0))
1

— =27
3

_8(:
3

— C:

3

)

Example: applying the inversion method

Probability density function
(integrates to 1)
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Example: applying the inversion method

Given:

flx) =2 =x€]0,2]
3 9

p(x) = gﬂf

Compute CDF:

X
3
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Example: applying the inversion method

Given:

X
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How do we uniformly sample the unit circle?
(Choose any point P=(px, py) in circle with equal probability)
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Uniformly sampling unit circle: first try

m () =uniform random angle between 0 and 27
®m 7 = uniform random radius between 0 and 1
m Return point: (7 cos 6, rsin 6)

This algorithm does not produce the desired uniform sampling of
the area of a circle. Why?
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Because sampling is not uniform in area!
Points farther from center of circle are less likely to be chosen

=216 =& p(r,0)drdf ~ rdrdf
p(r,0) ~r
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Sampling a circle (via inversion in 2D)

27 1 1 27 TQ 1 D
A:/ / rdrdé’:/ rdr/ df = (—) 0 =
0 0 0 0 2 0 10

1 r

p(r,0)drdf = —rdrdf — p(r,0) = —

.

p(T, 6’) :1p(7°)p((9) «—— 1,0 independent / }rdrd&
p(0) = 5 / %\ \

| dr
P(0) = 56 ) \\Kj
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Uniform area sampling of a circle

WRONG RIGHT
Not Equi-areal Equi-areal
(9 — 27T§1 (9 m— 27T€1
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Shirley’s mapping

A
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Uniform sampling via rejection sampling

® Generate random point within unit circle

® @ do {
1 - 2 * randO01 () ;

l - 2 * randO1l () ;

X
® Y =
while (x*x + y*y > 1.);

® }

Efficiency of technique: area of circle / area of square
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Aside: approximating the area of a circle

o inside 0

for (1 0; i < N; ++1) {
x =1 - 2 * randO01l () ;
vy =1 -2 * randO1 () ;
if (x*x + y*y < 1.)

® ++1inside;

}
® ® A = inside * 4 / N;
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Rejection sampling to generate 2D directions

Goal: generate random directions
in 2D with uniform probability

x =1 - 2 * randO01l () ;
vy =1 -2 * randO1 () ;
r = sgrt (x*x+y*y) ;

x dir = x/r;
y dir = y/r;

This algorithm is not correct! What is wrong?
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Rejection sampling to generate 2D directions

Goal: generate random directions
in 2D with uniform probability

do {
x =1 -2 * randO01l () ;
v =1 -2 * rand01 () ;
} while (x*x + y*y > 1.);

r = sqrt (x*x+y*y) ;
x dir = x/r;
y_dlr y/xr;
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Monte Carlo integration

b

m Definite integral f(z)dx
What we seek to estimate a

® Random variables X; ~ p(z)

X is the value of a random sample
drawn from the distribution p(x) Y, =
Y; isalso arandom variable.

m Expectation of f

m Estimator b
Monte Carlo estimate of / f(z)dx Fn =

Assuming samples X ; drawn from uniform
pdf. | will provide estimator for arbitrary
PDFs later in lecture.
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Basic unbiased Monte Carlo estimator

N

b— a
E[Fy] =E Y,
N N ;
b— a — b— a —
Unbiased estimator: =— Z ElYi] = — Z E[f(X;)]
Expected value of i=1 i=1
estimator is the integral b—a — /b
: = x) plx)dx
we wish to evaluate. N ; . /(@) pl .)\
Assume uniform
probability density for now
Properties of expectation: Xi~U (&17 b)
_ ) p(z) =+

E
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Direct lighting estimate

Uniformly-sample hemisphere of directions with respect to solid angle

plw) = % E(p) :/L(p,w) cos 6 dw
L(}D/’w) Estimator:
dio X; ~pw)
Y; = f(X5)

Y; = L(p,w;)cos b;

27TN
Frn = — Y,
N N;
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Direct lighting estimate

Uniformly-sample hemisphere of directions with respect to solid angle

E(p) :/L(p,w) cos 6 dw

Given surface point P A ray tracer evaluates radiance along a ray
(see Raytracer::trace_ray() in raytracer.cpp)

For each of N samples:
Generate random direction: w; /
Compute incoming radiance arriving L; at p from direction: ),
Compute incident irradiance due toray: dE; = L;cos 0,

2 . :
Accumulate NwdEZ— into estimator

41CMU 15-462/662, Spring 2016



Hemispherical solid angle =~ ——we— <«——— Light source

sampling, 100 sample rays

(random directions drawn
uniformly from hemisphere)




Why is the image In the previous slide “noisy”?
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Incident lighting estimator uses different
random directions in each pixel. Some of those
directions point towards the light, others do not.

(Estimator is a random variable)

. N

4
-

Y ard - .
e AT




|ldea: don’t need to integrate over entire hemisphere of
directions (incoming radiance is 0 from most directions)

Only integrate over the area of the light
(directions where incoming radiance is non-zero)
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Direct lighting: area integral

E (p) — / L(p,w) cos 0 diy <«——— Integral over directions

o , cosfcost hae .
_ ge of variables
E(p) /, LO (p ,W ) V(p7 p ) ‘p — p/‘z dA to integral over area
of light *

dA dA’ cos b

dw = —
P’ —pl* |p—Dp|

Binary visibility function:
1if p’is visible from p, 0 otherwise
(accounts for light occlusion)

Outgoing radiance from light
point p, in direction w’ towards p
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Direct lighting: area integral

cos 6 cos 6’

E(p) :/ L,(p', ") V(p,p') P dA’

Sample shape uniformly by area A’

A / p(p)dA" =1
/N !
p’
LA o
P~ p(p) =+
, Cd/ __ p_ p/
~¢ /
\W=p —p
—
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Direct lighting: area integral

cos 6 cos 6’
E(p) = / L,(p', ") V(p,p') —— dA’
Probability:
1
T p(p) =
o P
) T / /
v =pPp=Pb Y; = Lo(p;,w;) V(p, p;) 030, COSQQ
. / N
W=D —p A’
F Y,
— NTN o
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Light source area —
sampling, 100 sample rays .

.
g .
.
g .
L
.

Dy )

\J
\d
\J
)
\J
L
)
\J
\J
-
L]
. \J
| )
.
\J
L
]
L
.
)

T no occlusion Is present, all airections chosel @ “nit" the light source.

Choice ot direction only matters if port 2l from surface point p.)



Variance

m Definition

VY] = E[(Y - E[Y])"]
= EB[Y?] — E[Y]*

m Variance decreases linearly with number of samples

VI 20| = VI = N VY = VY

Properties of variance:

- N ] N
VI Y| =) VY]
L1=1 _ 1=1

ViaY] = a* V[Y]
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1arealightsample  —cm———
(high variance in irradiance estimate)




16 area light samples  ———
(high variance in irradiance estimate)




Comparing different techniques

m Variance in an estimator manifests as noise in rendered images

B Estimator efficiency measure:
1

Variance x Cost

Efficiency o

m |[f one integration technique has twice the variance as another,
then it takes twice as many samples to achieve the same
variance

m [f one technique has twice the cost of another technique with
the same variance, then it takes twice as much time to achieve
the same variance
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“Biasing”

m We previously used a uniform probability distribution to generate
samples in our estimator

B |dea: change the distribution-bias the selection of samples
X; ~ p(x)

B However, for estimator to remain unbiased, must change the
estimator to:

m Note: “biasing” selection of random samples is different than
creating a biased estimator

- Biased estimator: expected value of estimator does not equal
integral it is designed to estimate (not good!)
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General unbiased Monte Carlo estimator

’ 1 S(XG)
/a flw)de ~ Z p(X;)

X; ~ p(x)

Special case where X; drawn from uniform distribution:

b— N XZNU(CL,[))
LN = NaZf(Xi) 1
i=1 p(x):b—a
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Biased sample selection, but unbiased estimator

m Probability: X, ~ p(2)

: : _J(X)
m Estimator: Y, = e
1| JXG)
B =FE p(Xi)
- [ e
— [ f@)ds
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Importance sampling

Idea: bias selection of samples towards parts of domain where
function we are integrating is large (“most useful samples”)

Sample according to /() Recall definition of variance:
p(z) = cf () V[f] = E[f?] — E*[f]
fo 1) o [ [f(@)]7
f(x) p(z) Elf~] —/ o) p(z)dx
(] f(:v) f@)
-/ 7 Bl
=FE|f /f ) da
If PDF is proportional to f "
then variance is 0! =7
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Importance sampling example
Cosine-weighted hemisphere sampling in irradiance estimate:

cos 0

f(w) = L;(w) cos @ p(w) =

T

1 < fw 1 L;(w) cos@
[iram g 30 = T = 53 e

|dea: bias samples toward directions where cos 6 is large
(if L is constant, then these are the directions that contribute most)
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Summary: Monte Carlo integration

B Monte Carlo estimator

- Estimate integral by evaluating function at random sample points in
domain N b
1 f(Xi) /
Fny = — E ~ f(x)dx

m Useful in rendering due to estimate high dimension integrals

- Faster convergence in estimating high dimensional integrals than non-
randomized quadrature methods

- Suffers from noise due to variance in estimate

m |[mportance sampling

- Reduce variance by biasing choice of samples to regions of domain where
value of function s large

- Intuition: pick samples that will “contribute most” to estimate
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What you should know:

B How do we use the trapezoidal rule to integrate a function?

B How does work increase with dimensionality of our function?
- This is why we typically use Monte Carlo integration in graphics!

B Give a high level overview of the process of Monte Carlo integration

B Whatis a probability density function (PDF)?

B Whatis a Cumulative Distribution Function (CDF)?

B The Inversion Method can be used to correctly draw a sample from a PDF.
- Sketch the overall step by step process for using the Inversion Method.
- Work through how to use it to sample area of a circle
- Work through how to use it to sample solid angles from a hemisphere

B Whatis rejection sampling? Show how to use rejection sampling to sample area of a circle,
volume of a sphere, directions on a sphere, and solid angles from a hemisphere.

B Use one of the sampling methods we discussed to correctly accumulate incident irradiance
on a surface patch.
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