
Computer Graphics 
CMU 15-462/15-662, Spring 2016

Lecture 15:

Numerical Integration 
(with a focus on Monte Carlo integration)
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Review: fundamental theorem of calculus

2

Z
x

a

f(t)dt = F (x)� F (a)

Z b

a
f(x)dx = F (b)� F (a)

f(x) =
d

dx

F (x)

x� F (x)� F (a)

x� F (x)� F (a)

x� F (x)� F (a)� x = a

x� F (x)� F (a)

x� F (x)� F (a)
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Definite integral as “area under curve”

3

x = a

x = b

x = a

x = b

Z b

a
f(x)dx

f(x)
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Simple case: constant function 

4

f(x)

x = a

x = b

x = a

x = b

Z b

a
Cdx = (b� a)C

Z b

a
Cdx = (b� a)C

C
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Affine function:

5

f(x)

x = a

x = b

x = a

x = b

f(x) = cx+ d

Z b

a
f(x)dx =

1

2
(f(a) + f(b))(b� a)

f(a)� f(b)

f(a)� f(b)

1

2
(f(a) + f(b))
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Piecewise affine function

6

f(x)

Sum of integrals of individual affine components

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

Z b

a
f(x)dx =

1

2

n�1X

i=0

(xi+1 � xi)(f(xi) + f(xi+1))
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Piecewise affine function

7

f(x)

If N-1 segments are of equal length:

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

h =
b� a

n� 1
Z b

a
f(x)dx =

h

2

n�1X

i=0

(f(xi) + f(xi+1)

= h

 
n�1X

i=1

f(xi) +
1

2
(f(x0) + f(xn))

!

=
nX

i=0

Aif(xi)
Weighted combination 
of measurements.
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Polynomials?

8

x = a

x = b

x = a

x = b

f(x)
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Aside: interpolating polynomials

9

Consider n+1 measurements of a function f(x)

There is a unique degree ≤ n polynomial that interpolates the points:

f(x0), f(x1), f(x2), · · · , f(xn)

p(x) =
nX

i=0

f(xi)
nY

j 6=i,j=0

✓
x� xj

xi � xj

◆

=
nX

i=0

f(xi)li(x)

Note:              is 1 at        and 0 at 
all other measurement points 

li(x) xi
l0(x)� l1(x)� l2(x)� l3(x)

l0(x)� l1(x)� l2(x)� l3(x)l0(x)� l1(x)� l2(x)� l3(x)
l0(x)� l1(x)� l2(x)� l3(x)
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Gaussian quadrature theorem

10

If           is a polynomial of degree of up to 2n+1, then its integral over 
[a,b] is computed exactly by a weighted combination of n+1 
measurements in this range. 

f(x)

Z b

a
f(x)dx =

nX

i=0

Aif(xi)
Ai =

Z b

a
li(x)dx

Where are these points? 

Roots of degree n+1 polynomial             where: q(x)
Z b

a
x

k
q(x)dx = 0

0  k  n

Z b

a
x

k
q(x)dx = 0

0  k  n
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Arbitrary function f(x)?

11

f(x)

x0 = a

x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b
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Trapezoidal rule

12

f(x)

Approximate integral of f(x) by assuming function is piecewise linear

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

h =
b� a

n� 1
Z b

a
f(x)dx = h

 
n�1X

i=1

f(xi) +
1

2
(f(x0) + f(xn))

!
For equal length segments:
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Trapezoidal rule

13

f(x)

h ⇠ 1

n

Consider cost and accuracy of estimate as                           (or                 )  n ! 1 h ! 0

Work:

Error can be shown to be: O(h2) = O(
1

n2
)

O(n)

(for f(x) with continuous second derivative)
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Integration in 2D

14

Consider integrating                   using the trapezoidal rule 
(apply rule twice: when integrating in x and in y)  

f(x, y)

First application of rule

Second application

Errors add, so error still: 

Z b
y

a
y

Z b
x

a
x

f(x, y)dxdy =

Z b
y

a
y

 
O(h2) +

nX

i=0

Aif(xi, y)

!
dy

= O(h2) +
nX

i=0

Ai

Z b
y

a
y

f(xi, y)dy

= O(h2) +
nX

i=0

Ai

0

@O(h2) +
nX

j=0

Ajf(xi, yj)

1

A

= O(h2) +
nX

i=0

nX

j=0

AiAjf(xi, yj)

O(h2)

But work is now: O(n2)

Must perform much more work in 2D to get 
same error bound on integral!

(n x n set of measurements) In K-D, let N = nk

Error goes as:  O
✓

1

N2/k

◆
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Recall: camera measurement equation from 
last time

15

p

p0

r2

✓

✓

d

Q =

1

d2

Z t1

t0

Z

Alens

Z

Afilm

L(p0 ! p, t) cos4 ✓ dp dp0 dt0

5D integral!

(Rendering requires computation of infinite dimensional integrals. Coming soon in class!)
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Monte Carlo Integration

16

Slides credit: a majority of these slides were created by Matt Pharr and Pat Hanrahan 
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Monte Carlo numerical integration

▪ Estimate value of integral using random sampling of function 

- Value of estimate depends on random samples used 

- But algorithm gives the correct value of integral “on average” 

▪ Only requires function to be evaluated at random points on its domain 

- Applicable to functions with discontinuities, functions that are 
impossible to integrate directly 

▪ Error of estimate is independent of the dimensionality of the integrand 

- Depends on the number of random samples used:

17

So far we’ve discussed techniques that use 
a fixed set of sample points (e.g., uniformly 
spaced, or obtained by finding roots of 
polynomial (Gaussian quadrature))

O(n1/2)

Recall previous trapezoidal rule example: 
(dropping the n2 for simplicity)

O(n�1/k)
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Review: random variables

18

X random variable. Represents a distribution of 
potential values

probability density function (PDF). Describes relative 
probability of a random process choosing value 

X ⇠ p(x)

p(1) = p(2) = p(3) = p(4) = p(5) = p(6)

X takes on values 1,2,3,4,5,6

X ⇠ p(x)

Uniform PDF: all values over a domain are equally likely 

e.g., for an unbiased die
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Think:        is the probability that a random measurement of        will yield the value  

Discrete probability distributions

19

xi

xi

pi pi

pi � 0

pi =
1

6

n discrete values

With probability

Requirements of a PDF:

Six-sided die example:

nX

i=1

pi = 1

pi X xi

X takes on the value        with probabilityxi pi
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Cumulative distribution function (CDF)

20

0  Pi  1

Pn = 1 Pj

0

1
Cumulative PDF:

where:

xi

pi

Pj =
jX

i=1

pi

(For a discrete probability distribution)
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How do we generate samples of a discrete 
random variable (with a known PDF?) 

21



CMU 15-462/662, Spring 2016

Sampling from discrete probability 
distributions

22

⇠

Pi�1 < ⇠  Pi

To randomly select an event, 
select       ifxi

2 [0, 1)Uniform random variable

x2

Pj

0

1
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Continuous probability distributions

23

PDF p(x)

p(x) � 0

P (x)

P (x) =

Z
x

0
p(x) dx

P (x) = Pr(X < x)

P (1) = 1

= P (b)� P (a)

CDF

Pr(a  X  b) =

Z b

a
p(x) dx

Uniform distribution 
(for random variable        defined on [0,1] domain)

1

0 1

0 1

X
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Sampling continuous random variables 
using the inversion method

24

Cumulative probability distribution function
P (x) = Pr(X < x)

Construction of samples: 
Solve for

x = P

�1(⇠)

0

1

⇠

x

Must know the formula for: 
1. The integral of 
2. The inverse function

p(x)

P

�1(x)
1
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Example: applying the inversion method

25

f(x) = x

2
x 2 [0, 2]

Given:

Compute PDF:

1 =

Z 2

0
c f(x) dx

= c(F (2)� F (0))

= c

1

3
23

=
8c

3
c =

3

8
, p(x) =

3

8
x

2

Relative density of probability 
of random variable taking on 
value x over [0,2] domain

Probability density function 
(integrates to 1)
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Example: applying the inversion method

26

f(x) = x

2
x 2 [0, 2]

Given:

Compute CDF:

p(x) =
3

8
x

2

P (x) =

Z
x

0
p(x) dx

=
x

3

8
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Example: applying the inversion method

27

f(x) = x

2
x 2 [0, 2]

Given:

Sample from 

p(x) =
3

8
x

2

p(x)

P (x) =
x

3

8

⇠ = P (x) =
x

3

8

x = 3
p

8⇠
x

⇠
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How do we uniformly sample the unit circle? 
(Choose any point P=(px, py) in circle with equal probability) 

28
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Uniformly sampling unit circle: first try
▪      = uniform random angle between 0 and 

▪      = uniform random radius between 0 and 1 

▪ Return point: 

29

2⇡

(r cos ✓, r sin ✓)

This algorithm does not produce the desired uniform sampling of 
the area of a circle. Why?

(r cos ✓, r sin ✓)
(r cos ✓, r sin ✓)
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Because sampling is not uniform in area!

30

✓ = 2⇡⇠1 r = ⇠2

rdrd✓

Points farther from center of circle are less likely to be chosen

p(r, ✓)drd✓ ⇠ rdrd✓

p(r, ✓) ⇠ r

p(r, ✓)drd✓ ⇠ rdrd✓

p(r, ✓) ⇠ r
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Sampling a circle (via inversion in 2D)

31

A =

Z 2⇡

0

Z 1

0
r dr d✓ =

Z 1

0
r dr

Z 2⇡

0
d✓ =

✓
r2

2

◆ ���
1

0
✓
���
2⇡

0
= ⇡

p(r, ✓) dr d✓ =
1

⇡
r dr d✓ ! p(r, ✓) =

r

⇡

p(r, ✓) = p(r)p(✓)

p(✓) =
1

2⇡

P (✓) =
1

2⇡
✓ ✓ = 2⇡⇠1

p(r) = 2r

P (r) = r2 r =
p

⇠2

rdrd✓
independent r, ✓
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Uniform area sampling of a circle

32

WRONG 
Not Equi-areal

RIGHT 
Equi-areal

✓ = 2⇡⇠1

r =
p

⇠2

✓ = 2⇡⇠1

r = ⇠2
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Shirley’s mapping

33

r = ⇠1

✓ =
⇡⇠2
4r

Distinct cases for eight octants
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Uniform sampling via rejection sampling

34

do { 
  x = 1 - 2 * rand01(); 
  y = 1 - 2 * rand01(); 
} while (x*x + y*y > 1.);

Efficiency of technique: area of circle / area of square

Generate random point within unit circle
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Aside: approximating the area of a circle

35

inside = 0 
for (i = 0; i < N; ++i) { 
  x = 1 - 2 * rand01(); 
  y = 1 - 2 * rand01(); 
  if (x*x + y*y < 1.) 
    ++inside; 
} 
A = inside * 4 / N;
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Rejection sampling to generate 2D directions

36

x = 1 - 2 * rand01(); 
y = 1 - 2 * rand01(); 

r = sqrt(x*x+y*y); 
x_dir = x/r; 
y_dir = y/r;

Goal: generate random directions 
in 2D with uniform probability

This algorithm is not correct! What is wrong?
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Rejection sampling to generate 2D directions

37

do { 
  x = 1 - 2 * rand01(); 
  y = 1 - 2 * rand01(); 
} while (x*x + y*y > 1.); 

r = sqrt(x*x+y*y); 
x_dir = x/r; 
y_dir = y/r;

Goal: generate random directions 
in 2D with uniform probability
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▪ Definite integral 

▪ Random variables  

▪ Expectation of f  

▪ Estimator

        is the value of a random sample 
drawn from the distribution      
        is also a random variable.

Monte Carlo integration

Xi ⇠ p(x)

Yi = f(Xi)
Xi ⇠ p(x)

Xi ⇠ p(x)
Yi = f(Xi)

Z b

a
f(x)dx

E[Yi] = E[f(Xi)] =

Z b

a
f(x) p(x) dx

FN =
b� a

N

NX

i=1

YiMonte Carlo estimate of  

Assuming samples         drawn from uniform 
pdf. I will provide estimator for arbitrary 
PDFs later in lecture.

f(x)�Xi

Z b

a
f(x)dx

What we seek to estimate
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Basic unbiased Monte Carlo estimator

39

Assume uniform 
probability density for now

Properties of expectation:

E

"
X

i

Yi

#
=
X

i

E[Yi]

E[aY ] =aE[Y ]

Xi ⇠ U(a, b)

p(x) =
1

b� a

E[FN ] =E

"
b� a

N

NX

i=1

Yi

#

=
b� a

N

NX

i=1

E[Yi] =
b� a

N

NX

i=1

E[f(Xi)]

=
b� a

N

NX

i=1

Z b

a
f(x) p(x)dx

=
1

N

NX

i=1

Z b

a
f(x) dx

=

Z b

a
f(x) dx

Unbiased estimator: 
Expected value of 
estimator is the integral 
we wish to evaluate.



CMU 15-462/662, Spring 2016

Direct lighting estimate

40

✓

d!

dA

E(p) =

Z
L(p,!) cos ✓ d!

=2⇡

Z
L(p,!) cos ✓

1

2⇡
d!

=2⇡

Z
L(p,!) cos ✓ p(!) d!

Estimator:
L(p,!)

p(!) =
1

2⇡

Uniformly-sample hemisphere of directions with respect to solid angle

Xi ⇠ p(!)

Yi = f(Xi)

Yi = L(p,!i)cos ✓i

FN =
2⇡

N

NX

i=1

Yi
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Direct lighting estimate

41

E(p) =

Z
L(p,!) cos ✓ d!

=2⇡

Z
L(p,!) cos ✓

1

2⇡
d!

=2⇡

Z
L(p,!) cos ✓ p(!) d!

Given surface point p 

For each of N samples: 

Generate random direction: 

Compute incoming radiance arriving          at p from direction:   

Compute incident irradiance due to ray:  

Accumulate                      into estimator

Uniformly-sample hemisphere of directions with respect to solid angle

2⇡

N
dEi

dEi = Licos ✓i

Li

!i

!i

A ray tracer evaluates radiance along a ray 
(see Raytracer::trace_ray() in raytracer.cpp)
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Hemispherical solid angle 
sampling, 100 sample rays 

(random directions drawn 
uniformly from hemisphere)

Light source

Occluder 
(blocks light)
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Why is the image in the previous slide “noisy”?

43
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Incident lighting estimator uses different 
random directions in each pixel. Some of those 
directions point towards the light, others do not. 

(Estimator is a random variable)
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Idea: don’t need to integrate over entire hemisphere of 
directions (incoming radiance is 0 from most directions) 

Only integrate over the area of the light 
(directions where incoming radiance is non-zero)

45
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Direct lighting: area integral

46

E(p) =

Z
L(p,!) cos ✓ d!

=2⇡

Z
L(p,!) cos ✓

1

2⇡
d!

=2⇡

Z
L(p,!) cos ✓ p(!) d!

Integral over directions

Change of variables 
to integral over area 
of light *

E(p) =

Z

A

0
L
o

(p

0,!0
)V (p, p0)

cos ✓ cos ✓0

|p� p

0|2 dA0

Outgoing radiance from light 
point p, in direction w’ towards p

Binary visibility function: 
1 if p’ is visible from p, 0 otherwise 
(accounts for light occlusion)

dw =
dA

|p0 � p|2 =
dA

0
cos ✓

|p0 � p|2A0

p0

p

✓

✓0

!0 = p� p0

! = p0 � p
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Direct lighting: area integral

47

Sample shape uniformly by area A’
Z

A0
p(p0) dA0 = 1

p(p0) =
1

A0

E(p) =

Z

A

0
L
o

(p

0,!0
)V (p, p0)

cos ✓ cos ✓0

|p� p

0|2 dA0

A0

p0

p

✓

✓0

!0 = p� p0

! = p0 � p
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Direct lighting: area integral

48

Estimator

E(p) =

Z

A

0
L
o

(p

0,!0
)V (p, p0)

cos ✓ cos ✓0

|p� p

0|2 dA0

A0

p0

p

✓

✓0

!0 = p� p0

! = p0 � p

p(p0) =
1

A0

Probability:

Y
i

= L
o

(p

0
i

,!0
i

)V (p, p0
i

)

cos ✓
i

cos ✓0
i

|p� p

0
i

|2

F
N

=

A0

N

NX

i=1

Y
i

Y
i

= L
o

(p

0
i

,!0
i

)V (p, p0
i

)

cos ✓
i

cos ✓0
i

|p� p

0
i

|2

F
N

=

A0

N

NX

i=1

Y
i



CMU 15-462/662, Spring 201649

Light source area 
sampling, 100 sample rays

If no occlusion is present, all directions chosen in computing estimate “hit” the light source.
(Choice of direction only matters if portion of light is occluded from surface point p.)
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Variance
▪ Definition 

▪ Variance decreases linearly with number of samples

50

V [Y ] = E[(Y � E[Y ])2]

= E[Y 2]� E[Y ]2

V

"
1

N

NX

i=1

Yi

#
=

1

N2

NX

i=1

V [Yi] =
1

N2
N V [Y ] =

1

N
V [Y ]

V [aY ] = a2 V [Y ]

Properties of variance:

V

"
NX

i=1

Yi

#
=

NX

i=1

V [Yi]
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1 area light sample 
(high variance in irradiance estimate)
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16 area light samples 
(high variance in irradiance estimate)
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Comparing different techniques
▪ Variance in an estimator manifests as noise in rendered images 

▪ Estimator efficiency measure: 

▪ If one integration technique has twice the variance as another, 
then it takes twice as many samples to achieve the same 
variance 

▪ If one technique has twice the cost of another technique with 
the same variance, then it takes twice as much time to achieve 
the same variance

53

E�ciency / 1

Variance⇥ Cost
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“Biasing” 
▪ We previously used a uniform probability distribution to generate 

samples in our estimator 

▪ Idea: change the distribution–bias the selection of samples 

▪ However, for estimator to remain unbiased, must change the 
estimator to: 

▪ Note: “biasing” selection of random samples is different than 
creating a biased estimator 
- Biased estimator: expected value of estimator does not equal 

integral it is designed to estimate (not good!)
54

Xi ⇠ p(x)

Yi =
f(Xi)

p(Xi)
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General unbiased Monte Carlo estimator

55

Xi ⇠ p(x)

Z b

a
f(x)dx ⇡ 1

N

NX

i=1

f(Xi)

p(Xi)

FN =
b� a

N

NX

i=1

f(Xi)
Xi ⇠ U(a, b)

p(x) =
1

b� a

Special case where        drawn from uniform distribution:Xi ⇠ U(a, b)

p(x) =
1

b� a
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Biased sample selection, but unbiased estimator

▪ Probability: 

▪ Estimator:

56

Xi ⇠ p(x)

Yi =
f(Xi)

p(Xi)

E[Yi] =E


f(Xi)

p(Xi)

�

=

Z
f(x)

p(x)
p(x) dx

=

Z
f(x) dx
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Importance sampling

57

Sample according to Recall definition of variance:

f̃(x) =
f(x)

p(x) E[f̃2] =

Z 
f(x)

p(x)

�2
p(x) dx

=

Z 
f(x)

f(x)/E[f ]

�2
f(x)

E[f ]
dx

=E[f ]

Z
f(x) dx

=E

2[f ]

! V [f̃ ] = 0 ?!?

If PDF is proportional to f 
then variance is 0!

Idea: bias selection of samples towards parts of domain where 
function we are integrating is large (“most useful samples”)

V [f̃ ] = E[f̃2]� E2[f̃ ]p(x) = cf(x)

f(x)
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Importance sampling example

58

f(!) = Li(!) cos ✓

Cosine-weighted hemisphere sampling in irradiance estimate:

p(!) =
cos ✓

⇡

Z

⌦
f(!) d! ⇡ 1

N

NX

i

f(!)

p(!)
=

1

N

NX

i

Li(!) cos ✓

cos ✓/⇡
=

⇡

N

NX

i

Li(!)

Idea: bias samples toward directions where                 is large 
(if L is constant, then these are the directions that contribute most)p(!) =

cos ✓

⇡
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Summary: Monte Carlo integration
▪ Monte Carlo estimator 

- Estimate integral by evaluating function at random sample points in 
domain 

▪ Useful in rendering due to estimate high dimension integrals 
- Faster convergence in estimating high dimensional integrals than non-

randomized quadrature methods 

- Suffers from noise due to variance in estimate 

▪ Importance sampling 
- Reduce variance by biasing choice of samples to regions of domain where 

value of function is large 

- Intuition: pick samples that will “contribute most” to estimate
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What you should know:
▪ How do we use the trapezoidal rule to integrate a function? 

▪ How does work increase with dimensionality of our function?    

- This is why we typically use Monte Carlo integration in graphics! 

▪ Give a high level overview of the process of Monte Carlo integration 

▪ What is a probability density function (PDF)?    

▪ What is a Cumulative Distribution Function (CDF)? 

▪ The Inversion Method can be used to correctly draw a sample from a PDF.     

- Sketch the overall step by step process for using the Inversion Method.    

- Work through how to use it to sample area of a circle 

- Work through how to use it to sample solid angles from a hemisphere 

▪ What is rejection sampling?   Show how to use rejection sampling to sample area of a circle, 
volume of a sphere, directions on a sphere, and solid angles from a hemisphere. 

▪ Use one of the sampling methods we discussed to correctly accumulate incident irradiance 
on a surface patch.
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