Lecture 10:
Curves, Surfaces & Meshes

Computer Graphics
CMU 15-462/15-662, Spring 2016
Assignment 2 is out!
Last time: overview of geometry

- Many types of geometry in nature
- Demand sophisticated representations
- Two major categories:
 - IMPLICIT - “tests” if a point is in shape
 - EXPLICIT - directly “lists” points
- Lots of representations for both
- Today:
 - subdivision curves and surfaces (explicit)
 - what is a surface, anyway?
 - nuts & bolts of polygon meshes
 - geometry processing / resampling
Subdivision (Explicit)

- Alternative starting point for B-spline curves: subdivision
- Start with control curve
- Insert new vertex at each edge midpoint
- Update vertex positions according to fixed rule
- For careful choice of averaging rule, yields smooth curve
 - Average with “next” neighbor (Chaikin): quadratic B-spline
Subdivision Surfaces (Explicit)

- Start with coarse polygon mesh ("control cage")
- Subdivide each element
- Update vertices via local averaging
- Many possible rule:
 - Catmull-Clark (quads)
 - Loop (triangles)
 - ...
- Common issues:
 - interpolating or approximating?
 - continuity at vertices?
- Easier than NURBS for modeling; harder to guarantee continuity
Subdivision in Action (Pixar’s “Geri’s Game”)

Q: What is a “surface?”
A: Oh, it’s a 2-dimensional manifold.
Q: Ok... but what the heck is a manifold?
The Earth looks flat, if you get close enough

Can pretend we’re on a grid:
The Earth looks flat, if you get close enough

Can pretend we’re on a grid:

Much harder to describe!
A smooth manifold also looks flat close up
Not all curves are smooth manifolds

No matter how close we get, doesn’t look like a single line!
What about sharp corners?

Can easily be flattened into a line.

Can still assign coordinates (just like Manhattan!)...

...But is it a manifold?
Definition of a manifold

- “A subset S of \mathbb{R}^m is an n-manifold if every point p in S is contained in a neighborhood that can be mapped bijectively and continuously (both ways) to the open ball in \mathbb{R}^n.”

- In other words: each little piece can be made flat without “ripping or poking holes.”
Why is the manifold property valuable?

- Makes life simple: all surfaces look the same (at least locally).
- Gives us coordinates! (At least locally.)

More abstractly, lets us talk about curved surfaces in terms of familiar tools: vector calculus & linear algebra.
Isn’t every shape manifold?

- No, for instance:

No way to put a (simple) coordinate system on the center point!
What about discrete surfaces?

- Surfaces made of, e.g., triangle are no longer smooth.
- But they can still be manifold:
 - two triangles per edge (no “fins”)
 - every vertex looks like a “fan”

Why? Simplicity.
 - no special cases to handle
 - keeps data structures (reasonably) simple
What about boundary?

- The boundary is where the surface “ends.”
- E.g., waist & ankles on a pair of pants.
- Locally, looks like a half disk
- Globally, each boundary forms a loop

Triangle mesh:
- one triangle per boundary edge
- boundary vertex looks like “pacman”
Anatomy of a manifold (in 2D and 3D)
What can we measure about vectors?

\[\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta \]
What can we measure about vectors?

\[\mathbf{v} \cdot \left(\frac{\mathbf{u}}{||\mathbf{u}||} \right) \]
Inner product of tangent vectors is

\[g(X, Y) = df(X) \cdot df(Y) \]

metric
(“first fundamental form”)
Q: What’s the length of a tangent vector?

\[|X| = \sqrt{df(X) \cdot df(X)} \]

\[= \sqrt{g(X, X)} \]
Normal is vector orthogonal to all tangents

\[N \cdot df(X) = 0 \quad \forall X \]
Which direction does the normal point?

\[|N| = 1 \]

\[N \cdot df(X) = 0 \quad \forall X \]

orientable

nonorientable
Curvature is change in normal
Standard definition: radius of curvature

\[\kappa = \frac{1}{r} \]
Alternative: normals as map to unit circle

Key idea: size of swept-out piece gives total curvature.
Discrete curvature as change in normal

...can still talk about change in normal.

Radius of curvature no longer makes sense!
What about surfaces?
Normal is now map to the sphere
Normal curvature

\[\kappa_n(X) = -df(X) \cdot dN(X) \]

\[-df(X) \cdot dN(Y) \]

("second fundamental form")
Fact: principal curvature directions are orthogonal.

$$dN(X_i) = \kappa_i df(X_i)$$
Q: What are the principal curvatures?
Mean & Gaussian Curvature

\[
\text{mean} \quad H = \frac{1}{2} (\kappa_1 + \kappa_2)
\]

\[
\text{Gaussian} \quad K = \kappa_1 \kappa_2
\]

\(\kappa_1 > 0, \kappa_2 > 0\)

\(\kappa_1 > 0, \kappa_2 = 0\)

\(\kappa_1 = 1, \kappa_2 = -1\)

\(H > 0\)

\(K > 0\)

\(H \neq 0\)

\(K = 0\)

\(H = 0\)

\(K < 0\)

developable

minimal
Discrete Gaussian Curvature?

- Once again, use area on Gauss sphere:

A lot can be done with this representation! See http://keenan.is/dgpdec for more.
How do we actually encode all this data?
Warm up: arrays vs. linked lists

- Want to store a list of numbers
- One idea: use an array (constant time lookup, coherent access)

```
1.7  2.9  0.3  7.5  9.2  4.8  6.0  0.1
```

- Alternative: use a linked list (linear lookup, incoherent access)

- Q: Why bother with the linked list?
- A: For one, we can easily insert numbers wherever we like...
Polygon soup, revisited

- Store triples of coordinates \((x,y,z)\) and indices \((i,j,k)\).
- E.g., tetrahedron:

 \[
 \begin{array}{ccc|ccc}
 x & y & z & i & j & k \\
 0: & -1 & -1 & -1 & 0 & 2 & 1 \\
 1: & 1 & -1 & 1 & 0 & 3 & 2 \\
 2: & 1 & 1 & -1 & 3 & 0 & 1 \\
 3: & -1 & 1 & 1 & 3 & 1 & 2 \\
 \end{array}
 \]

- Q: How do we find all the triangles touching vertex 2?
- Ok, now consider a more complicated mesh:

Very expensive to find the neighboring triangles! (What's the cost?)
Alternative: Incidence Matrices

- If we want to answer neighborhood queries, why not simply store a list of neighbors?
- Can encode all neighbor information via incidence matrices
- E.g., tetrahedron:

<table>
<thead>
<tr>
<th>VERTEX <-> EDGE</th>
<th>EDGE <-> FACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0 v1 v2 v3</td>
<td>f0 1 0 0 1 0 1</td>
</tr>
<tr>
<td>e0 1 1 0 0</td>
<td>e0 1 0 0 1 0 1</td>
</tr>
<tr>
<td>e1 0 1 1 0</td>
<td>e1 0 1 0 0 1 1</td>
</tr>
<tr>
<td>e2 1 0 1 0</td>
<td>e2 1 1 1 0 0 0</td>
</tr>
<tr>
<td>e3 1 0 0 1</td>
<td>e3 0 0 1 1 1 0</td>
</tr>
<tr>
<td>e4 0 0 1 1</td>
<td>e4 0 0 1 1 1 0</td>
</tr>
<tr>
<td>e5 0 1 0 1</td>
<td>e5 0 1 0 1 1 1</td>
</tr>
</tbody>
</table>

- 1 means “touches”; 0 means “does not touch”
- For large meshes, most entries will be zero!
- Can dramatically reduce storage cost using sparse matrices
- Still large storage cost, but finding neighbors is now O(1)
- (Bonus feature: mesh does not have to be manifold)
Alternative: Halfedge Data Structure

- Store some information about neighbors
- Don’t need an exhaustive list; just a few key pointers
- Key idea: two halfedges act as “glue” between mesh elements:

```
struct Halfedge
{
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};

struct Edge
{
    Halfedge* halfedge;
};

struct Face
{
    Halfedge* halfedge;
};

struct Vertex
{
    Halfedge* halfedge;
};
```

- Each vertex, edge, and face points to just one of its halfedges.
Halfedge makes mesh traversal easy

- Use “twin” and “next” pointers to move around mesh
- Use “vertex”, “edge”, and “face” pointers to grab element
- Example: visit all vertices of a face:

```c
Halfedge* h = f->halfedge;
    do {
        h = h->next;
    }
    while( h != f->halfedge );
```

- Example: visit all neighbors of a vertex:

```c
Halfedge* h = v->halfedge;
    do {
        h = h->twin->next;
    }
    while( h != v->halfedge );
```

- Note: only makes sense if mesh is manifold!
Halfedge also easy to edit

- Remember key feature of linked list: insert/delete elements
- Same story with halfedge mesh (“linked list on steroids”)
- Several atomic operations for triangle meshes:

 ![Diagram](image)

 - (Should be careful to preserve manifoldness!)
Edge Flip

- Triangles \((a, b, c), (b, d, c)\) become \((a, d, c), (a, b, d)\):

- Long list of pointer reassignments \((\text{edge} \rightarrow \text{halfedge} = \ldots)\)
- However, no elements created/destroyed.
- Q: What happens if we flip twice?
- (Challenge: can you implement edge flip such that pointers are unchanged after two flips?)
Edge Split

- Insert midpoint m of edge (c,b), connect to get four triangles:

![Diagram showing edge split](image)

- This time, have to add new elements.
- Lots of pointer reassignments.
- Q: Can we “reverse” this operation?
Edge Collapse

- Replace edge \((b, c)\) with a single vertex \(m\):

Now have to delete elements.

Still lots of pointer assignments!

Q: How would we implement this with a polygon soup?

Any other good way to do it? (E.g., different data structure?)
Alternatives to Halfedge

- Many very similar data structures:
 - winged edge
 - corner table
 - quadedge
 - ...

- Each stores local neighborhood information

- Similar tradeoffs relative to simple polygon list:
 - **CONS**: additional storage, incoherent memory access
 - **PROS**: better access time for individual elements, intuitive traversal of local neighborhoods

- (Food for thought: can you design a halfedge-like data structure with reasonably coherent data storage?)
Ok, but what can we actually do with our fancy new data structure?
Remeshing as resampling

- Remember our discussion of aliasing
- Bad sampling makes signal appear different than it really is
- E.g., undersampled curve looks flat
- Geometry is no different!
 - undersampling destroys features
 - oversampling destroys performance
- How do we resample a geometric signal?
Already know how to resample!

- Edge split is (local) upsampling:

- Edge collapse is (local) downsampling:

- Edge flip is (local) resampling:

- Still need to intelligently decide which edges to modify!
What makes a “good” geometric signal?

- One rule of thumb: triangle shape

 "GOOD"

 "BAD"

- More specific condition: Delaunay
- “Circumcircle interiors contain no vertices.”
- Not always a good condition, but often*.

*See Shewchuk, “What is a Good Linear Element”
How do we make a mesh “more Delaunay”?

- Already have a good tool: edge flips!
- If $\alpha + \beta > \pi$, flip it!

FACT: in 2D, flipping edges eventually yields Delaunay mesh

Theory: worst case $O(n^2)$; no longer true for surfaces in 3D.

Practice: simple, effective way to improve mesh quality
How do we make a triangles “more round”?

- Delaunay doesn’t mean triangles are “round” (angles near 60°).

- Simple version of technique called “Laplacian smoothing”. *

*See Crane, “Digital Geometry Processing with Discrete Exterior Calculus” http://keenan.is/dgpdec
Combine Smoothing + Refinement

- Current best techniques do both
What else makes a “good” geometric signal?

- Good approximation of original signal!
- Keep only elements that contribute information about shape.
 - simplification (e.g., quadric error metric)
- Add additional information where curvature is large.
 - subdivision (e.g., Loop, Catmull-Clark, etc.)
- Will see more of this in your assignment...!
What you should know:

- How to use split and average operations to do subdivision
- What is a manifold surface?
- Distinguish manifold from non-manifold surfaces
- Can a manifold surface have a boundary? Give an example.
- Explain the idea of surface curvature with a diagram.
- Give an example of a surface where one of the principal curvatures is zero
- What do you need to store in a halfedge data structure?
- How can you find all vertices in a face with this data structure?
- How can you find all faces that contain a vertex with this data structure?
- Be able to perform edge flips, edge splits, and edge collapse with this data structure.
- **BONUS:** Think of an algorithm to traverse every face in a manifold using this data structure.