
Computer Graphics
CMU 15-462/15-662, Spring 2016

Lecture 1:

Course Intro:
Welcome to Computer Graphics!

 CMU 15-462/662,
Spring 2016

Hi!

Kai KangNancy
Pollard

Yu Mao

Sohail Sidique

 CMU 15-462/662,
Spring 2016

What is computer graphics?

com•put•er graph•ics /k!mˈpyo͞od!r ˈɡrafiks/ n.
The use of computers to synthesize and manipulate
visual information.

 CMU 15-462/662,
Spring 2016

Why visual information?

(Allan Ajifo)
(Petar Milošević)

About 30% of brain dedicated to visual processing...

...eyes are highest-bandwidth port into the head!

 CMU 15-462/662,
Spring 2016

Humans are visual creatures!

 CMU 15-462/662,
Spring 2016

History of visual depiction
Humans have always been visual creatures!

Indonesian cave painting (~38,000 BCE)

 CMU 15-462/662,
Spring 2016

Visual technology: painting / illustration
Not purely representational: ideas, feelings, data, ...

 CMU 15-462/662,
Spring 2016

Visual technology: carving / sculpture

 CMU 15-462/662,
Spring 2016

Visual technology: photography / imaging
Processing of visual data no longer happening in the head!

Joseph Niépce, “View from the Window at Le Gras” (1826)

 CMU 15-462/662,
Spring 2016

Visual technology: photography / imaging

 CMU 15-462/662,
Spring 2016

Visual technology: digital imagery
Intersection of visual depiction & computation

Ivan Sutherland, “Sketchpad” (1963)

 CMU 15-462/662,
Spring 2016

Visual technology: digital imagery

 CMU 15-462/662,
Spring 2016

Visual technology: 3D fabrication
Create physical realization of digital shape

A.J. Herbert / 3M (1979)

 CMU 15-462/662,
Spring 2016

Visual technology: 3D fabrication

 CMU 15-462/662,
Spring 2016

Technologies for visual depiction
Drawing/painting/illustration (~40,000 BCE)
Sculpture (~40,000 BCE)
Photography (~1826)
Digital Imagery (~1963)
3D Fabrication (~1979)

 CMU 15-462/662,
Spring 2016

Computer graphics is everywhere!

 CMU 15-462/662,
Spring 2016

Entertainment (movies, games)

 CMU 15-462/662,
Spring 2016

Entertainment
Not just cartoons!

 CMU 15-462/662,
Spring 2016

Art and design

 CMU 15-462/662,
Spring 2016

Industrial design

 CMU 15-462/662,
Spring 2016

Computer aided engineering (CAE)

 CMU 15-462/662,
Spring 2016

Architecture

 CMU 15-462/662,
Spring 2016

Scientific/mathematical visualization

 CMU 15-462/662,
Spring 2016

Medical/anatomical visualization

 CMU 15-462/662,
Spring 2016

Navigation

 CMU 15-462/662,
Spring 2016

Communication

 CMU 15-462/662,
Spring 2016

Foundations of computer graphics
All these applications demand sophisticated theory & systems
Theory
- geometric representations
- sampling theory
- integration and optimization
- radiometry
- perception and color
Systems
- parallel, heterogeneous processing
- graphics-specific programming languages

 CMU 15-462/662,
Spring 2016

ACTIVITY: modeling and drawing a cube
Goal: generate a realistic drawing of a cube
Key questions:
- Modeling: how do we describe the cube?
- Rendering: how do we then visualize this model?

 CMU 15-462/662,
Spring 2016

ACTIVITY: modeling the cube
Suppose our cube is...
- centered at the origin (0,0,0)
- has dimensions 2x2x2
QUESTION: What are the coordinates of the cube vertices?

A: (1, 1, 1) E: (1, 1,-1)
B: (-1, 1, 1) F: (-1, 1,-1)
C: (1,-1, 1) G: (1,-1,-1)
D: (-1,-1, 1) H: (-1,-1,-1)

QUESTION: What about the edges?
AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH

 CMU 15-462/662,
Spring 2016

ACTIVITY: drawing the cube
Now have a digital description of the cube:
VERTICES
A: (1, 1, 1) E: (1, 1,-1)
B: (-1, 1, 1) F: (-1, 1,-1)
C: (1,-1, 1) G: (1,-1,-1)
D: (-1,-1, 1) H: (-1,-1,-1)

How do we draw this 3D cube as a 2D (flat) image?
Basic strategy:
1. map 3D vertices to 2D points in the image
2. connect 2D points with straight lines
...Ok, but how?

EDGES

AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH

 CMU 15-462/662,
Spring 2016

Perspective projection
Objects look smaller as they get further away (“perspective”)
Why does this happen?
Consider simple (“pinhole”) model of a camera:

2D image

3D object

camera

 CMU 15-462/662,
Spring 2016

Perspective projection: side view
Where exactly does a point p = (x,y,z) end up on the image?
Let’s call the image point q=(u,v)

p=(x,y,z)

q=(u,v) 3D object

im
ag

e

 CMU 15-462/662,
Spring 2016

Perspective projection: side view
Where exactly does a point p = (x,y,z) end up on the image?
Let’s call the image point q=(u,v)
Notice two similar triangles: p=(x,y,z)

q=(u,v)

1
z

y

v 3D object

im
ag

e

Assume camera has unit size, coordinates relative to pinhole c
Then v/1 = y/z, i.e., vertical coordinate is just the slope y/z
Likewise, horizontal coordinate is u=x/z

c

 CMU 15-462/662,
Spring 2016

ACTIVITY: now draw it!
Need 12 volunteers
- each person will draw one cube edge
- assume camera is at c=(2,3,5)
- convert (x,y,z) of both endpoints to (u,v):

1. subtract camera location
2. divide x and y by z

- draw line between (u1,v1) and (u2,v2)

VERTICES
A: (1, 1, 1) E: (1, 1,-1)
B: (-1, 1, 1) F: (-1, 1,-1)
C: (1,-1, 1) G: (1,-1,-1)
D: (-1,-1, 1) H: (-1,-1,-1)

EDGES

AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH

 CMU 15-462/662,
Spring 2016

ACTIVITY: output on graph paper

0 1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1
0

1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1

 CMU 15-462/662,
Spring 2016

ACTIVITY: how did we do?

0 1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1
0

1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1

A: 1/4, 1/2
B: 3/4, 1/2
C: 1/4, 1
D: 3/4, 1
E: 1/6, 1/3
F: 1/2, 1/3
G: 1/6, 2/3
H: 1/2, 2/3

2D coordinates:

 CMU 15-462/662,
Spring 2016

But wait…
How do we draw lines on a computer?

 CMU 15-462/662,
Spring 2016

Output for a raster display
Common abstraction of a raster display:
- Image represented as a 2D grid of “pixels” (picture elements) **
- Each pixel can can take on a unique color value

** Should we think of pixels as “little squares”? Let’s see next class!

 CMU 15-462/662,
Spring 2016

Close up photo of pixels on a modern display

 CMU 15-462/662,
Spring 2016

What pixels should we color in to depict a line?
“Rasterization”: process of converting a continuous object to a discrete
representation on a raster grid (pixel grid)

 CMU 15-462/662,
Spring 2016

What pixels should we color in to depict a line?

Light up all pixels intersected by the line?

 CMU 15-462/662,
Spring 2016

What pixels should we color in to depict a line?
Diamond rule (used by modern GPUs):

light up pixel if line passes through associated diamond

 CMU 15-462/662,
Spring 2016

What pixels should we color in to depict a line?
Is there a right answer?

(consider a drawing a “line” with thickness)

 CMU 15-462/662,
Spring 2016

How do we find the pixels satisfying a
chosen rasterization rule?

Could check every single pixel in the image to see if it meets
the condition...

- O(n2) pixels in image vs. at most O(n) “lit up” pixels

- must be able to do better! (e.g., work proportional to
number of pixels in the drawing of the line)

 CMU 15-462/662,
Spring 2016

Incremental line rasterization
Let’s say a line is represented with integer endpoints: (u1,v1), (u2,v2)
Slope of line: s = (v2-v1) / (u2-u1)
Consider a very easy special case:
- u1 < u2, v1 < v2 (line points toward upper-right)
- 0 < s < 1 (more change in x than y)

v = v1;
for(u=u1; u<=u2; u++)
{
 v += s;
 draw(u, round(v))
}

Common optimization: rewrite algorithm to use only
integer arithmetic (Bresenham algorithm)

u1 u2

v1

v2

Assume integer coordinates
are at pixel centers

(u1,v1)

(u2,v2)

 CMU 15-462/662,
Spring 2016

Our line drawing!

0 1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1
0

1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1

A: 1/4, 1/2
B: 3/4, 1/2
C: 1/4, 1
D: 3/4, 1
E: 1/6, 1/3
F: 1/2, 1/3
G: 1/6, 2/3
H: 1/2, 2/3

2D coordinates:

 CMU 15-462/662,
Spring 2016

We just rendered a simple line drawing of a cube.

But to render more realistic pictures
(or animations) we need a much richer model

of the world.

surfaces
motion

materials
lights

cameras

 CMU 15-462/662,
Spring 2016

2D shapes

patches may overlap a color sample so depth samples from differ-
ent patches always compare with the latter patch in render order
“winning”.

Prior to rendering any set of patches, a depth clear to zero is neces-
sary to reset the depth buffer. This could be done with a “cover” op-
eration that simply zeros the depth buffer (without modifying other
buffers) or with a scissored depth buffer clear.

Once the render order issues are resolved, color shading is a matter
of bicubic interpolation [Sun et al. 2007] in the TES.

This is a lot of complexity to match the PDF specification’s patch
rendering order. Certainly if the hardware’s tessellation generator
simply guaranteed an order consistent with the PDF specification,
even at the cost of some less optimal hardware efficiency, rendering
PDF gradient meshes would be much more straightforward.

Another option is detecting via CPU preprocessing of the patch
mesh whether or not actual mesh overlaps are present [Randria-
narivony and Brunnett 2004]. When not present, gradient mesh
rendering could be much more straightforward and efficient. In
practice, we know overlaps are rare in real gradient mesh content.

Coarse Level-of-detail Control Graphics hardware tessellation
has a limited maximum level-of-detail for tessellation. When the
level-of-detail is clamped to a hardware limit for tessellation, tes-
sellation artifacts may arise. We monitor the relative size of tes-
sellated patches such that their maximum level-of-detail does not
grossly exceed the scale of two or three pixels in window space.
If this happens, patches need to be subdivided manually to ensure
the patch mesh avoids objectionable tessellation artifacts. Care is
necessary to maintain a water-tight subdivided patch mesh. This is
done by ensuring exactly matching level-of-detail computations on
mutual edges of adjacent patches.

8 Comparing GPU versus CPU Rendering

Our contributions for GPU-acceleration are best understood in con-
trast with Illustrator’s pre-existing CPU rendering approach. All
but a cursory description of Illustrator’s CPU rendering approach is
beyond the scope of this paper. Illustrator’s CPU rendering closely
follows the PDF standard [Adobe Systems 2008]. AGM’s CPU
renderer relies on a robust, expertly-tuned, but reasonably conven-
tional active edge list algorithm [Foley et al. 1990] for rasterizing
arbitrary paths including Bézier segments [Turner 2007]. Table 1
lists the differences between the CPU and GPU approaches in orga-
nizing the framebuffer storage for rendering. Table 2 lists the ways
rendering is different between the CPU and GPU approaches.

9 Performance

We benchmarked our GPU-accelerated rendering mode against
AGM’s CPU-based renderer on six Illustrator documents pictured
in Figure 10. We selected these scenes for their availability, artistic
content, and complexity. Table 3 quantitatively summarizes each
scene’s complexity. We consider these scenes representative of the
kind of complex artwork we wish to encourage by making its au-
thoring more interactive.

9.1 Benchmarking RGB Artwork

Table 4 presents our benchmarking results for RGB color model
rendering. Our benchmarking method executes a script that zooms
and pans over the content to mimic the kind of fast view changes an

(a) WF BambooScene.ai

(b) archerfish.ai (c) Blue Mirror.ai

(d) whale2.ai

(e) Tropical Reef.ai

(f) bigBlend2.ai

Figure 10: Challenging Illustrator artwork for benchmarking.

146:10 • V. Batra et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 146, Publication Date: August 2015

[Source: Batra 2015]

 CMU 15-462/662,
Spring 2016

(Stanislav Orekhov)

Complex 3D surfaces

Platonic noid

[Kaldor 2008]

 CMU 15-462/662,
Spring 2016

Modeling
material properties

[Jakob 2014]

[Wann Jensen 2001]

[Zhao 2013]

 CMU 15-462/662,
Spring 2016

Realistic lighting environments
WALL-E, (Pixar 2008)

 CMU 15-462/662,
Spring 2016

Realistic lighting environments
Toy Story 3 (Pixar 2010)

 CMU 15-462/662,
Spring 2016

Realistic lighting environments
Big Hero 6 (Disney 2014)

 CMU 15-462/662,
Spring 2016

This image is rendered in real-time on a modern GPU

Unreal Engine Kite Demo (Epic Games 2015)

 CMU 15-462/662,
Spring 2016

[Mirror’s Edge 2008]

So is this.

 CMU 15-462/662,
Spring 2016

Animation: modeling motion

https://www.youtube.com/watch?v=wYfYtV_2ezs

Luxo Jr. (Pixar 1986)

 CMU 15-462/662,
Spring 2016

Physically-based simulation of motion

https://www.youtube.com/watch?v=tT81VPk_ukU [James 2004]

 CMU 15-462/662,
Spring 2016

Course Logistics

 CMU 15-462/662,
Spring 2016

About this course
A broad overview of major topics and techniques in computer
graphics: geometry, rendering, animation, imaging

Focus on fundamental data structures and algorithms that are
reused across all areas of graphics

 CMU 15-462/662,
Spring 2016

Textbook and Resources
There is no textbook for this course, but here are some recommendations:

Pete Shirley and Steve Marschner with Michael Ashikhmin, Michael Gleicher, Naty
Hoffman, Garrett Johnson, Tamara Munzner, Erik Reinhard, Kelvin Sung, William B.
Thompson, Peter Willemsen, and Bryan Wyvill, Fundamentals of Computer Graphics. A
K Peters, 2009 [On Amazon]
John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley,
Steven K. Feiner, and Kurt Akeley, Computer Graphics: Principles and Practice, [On
Amazon]
Matt Pharr and Greg Humphreys, Physically Based Rendering: From Theory to
Implementation [On Amazon]

This book (PBRT) is the book for learning about modern ray tracing techniques. It has a great
website with full source code online for an advanced physically-based ray tracer. It even won
an oscar for its impact on the film industry!

Course website and piazza links coming soon!

 CMU 15-462/662,
Spring 2016

Assignments / Grading

(65%) Five programming assignments
- Four programming assignments (individually)
- One “go further” final assignment (in pairs)

(35%) Midterm / final
- Both cover cumulative material seen so far

 CMU 15-462/662,
Spring 2016

Late hand-in policy

Programming assignments
- Five late day points for the semester
- First four programming assignments only
- No more late points? 10% penalty per day
- No assignments will be accepted more than 3 days past the deadline

 CMU 15-462/662,
Spring 2016

Course philosophy

Let’s make this an active class: come to class, participate in
the class, contribute to the web site

Challenging assignments (with tons of “going further”
opportunities: see what you can do!)

Challenging exams (see what you can do!)

Very reasonable grading (at least the instructor thinks so)

 CMU 15-462/662,
Spring 2016

Next time, we’ll talk about drawing a triangle
- And it’s a lot more interesting than it might seem…
- Also, what’s up with these “jagged” lines?

See you next time!

 CMU 15-462/662,
Spring 2016

What you should know

For any given setup where we place a camera in the
environment, pointing down any of the main coordinate axes
(x, y, or z), computing a projection of points in the world onto
an image plane.

Write an algorithm for drawing lines that handles all edge
cases (i.e., including edges that are exactly horizontal or
vertical).

