#### Lecture 9:

## Introduction to Geometry

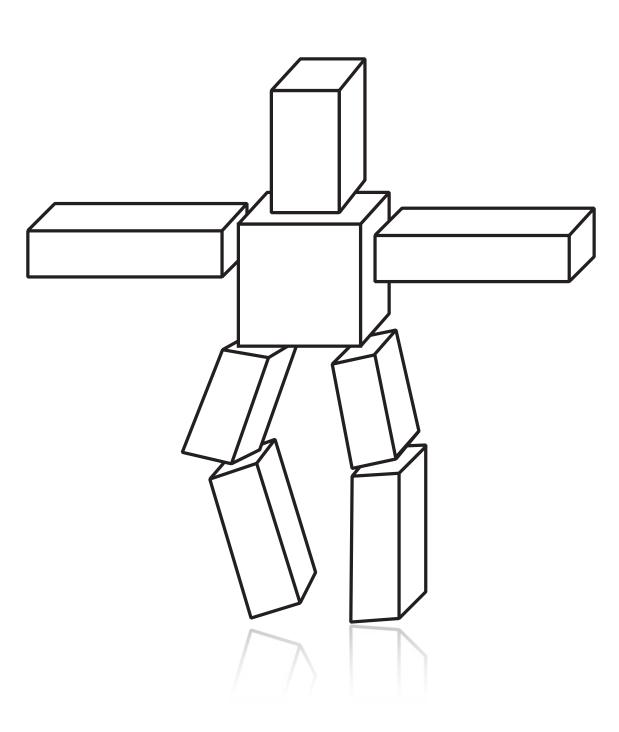
Computer Graphics CMU 15-462/15-662, Spring 2016

#### Increasing the complexity of our models

**Transformations** 

Geometry

Materials, lighting, ...







#### What is geometry?

The 19.5. Let  $\triangle ABC$  be inscribed in a semicircle with diameter  $\overline{A}$   $\overline{C}$ . Then  $\angle ABC$  angle.

#### Proof:

#### Statement

- 1. Draw radius OB. Then  $OB = OC = O_{C}$
- 2.  $m\angle OBC = m\angle BCA$  $m\angle OBA = m\angle BAC$
- 3.  $m\angle ABC = m\angle OBA +$
- 4.  $m\angle ABC + m\angle BC$   $\angle BAC = 180$
- 5.  $m\angle ABC + m\angle OBA = 180$
- 6. 2 m// 180
- 7. = 90
- & ABC is a right angle

- Given
  - sceles Triangle Theorem
- 3. Ang. ostulate
- 4. The sum eles of a triangle is 180
- 5. Substitution (like
- Substitution (line 3)
- 7. Division Property of Equality
- 8. Definition of Right Angle

#### Ceci n'est pas géométrie.

#### What is geometry?

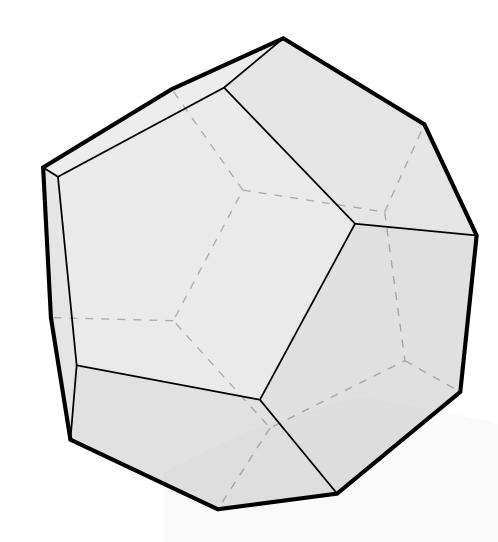
"Earth" "measure"

ge•om•et•ry /jē'āmətrē/ n.

- 1. The study of shapes, sizes, patterns, and positions.
- 2. The study of spaces where some quantity (lengths, angles, etc.) can be *measured*.







Plato: "...the earth is in appearance like one of those balls which have leather coverings in twelve pieces..."

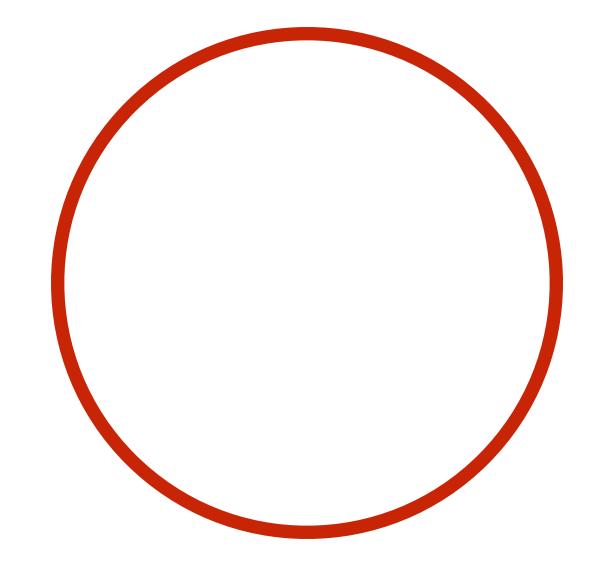
CMU 15-462/662, Spring 2016

#### How can we describe geometry?

#### **IMPLICIT**

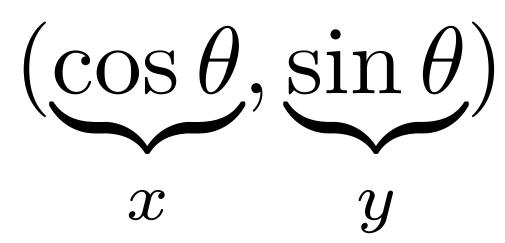
$$x^2 + y^2 = 0$$

## LINGUISTIC

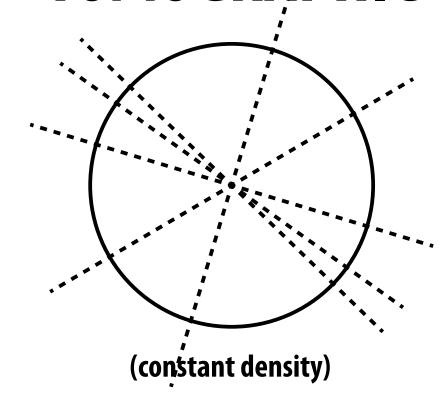


#### "unit circle"

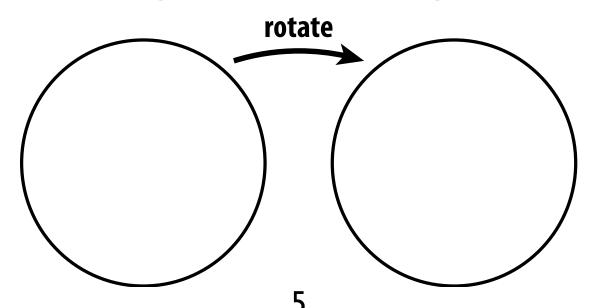
#### **EXPLICIT**



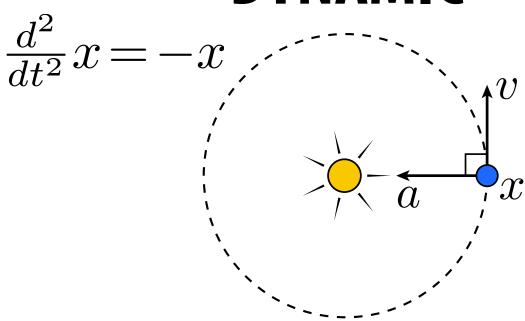
#### **TOMOGRAPHIC**



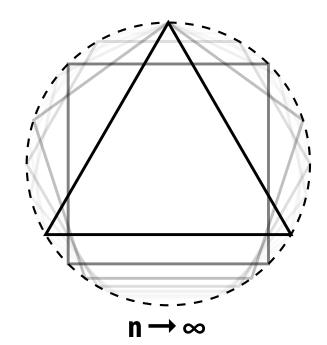
#### **SYMMETRIC**



#### **DYNAMIC**



#### **DISCRETE**

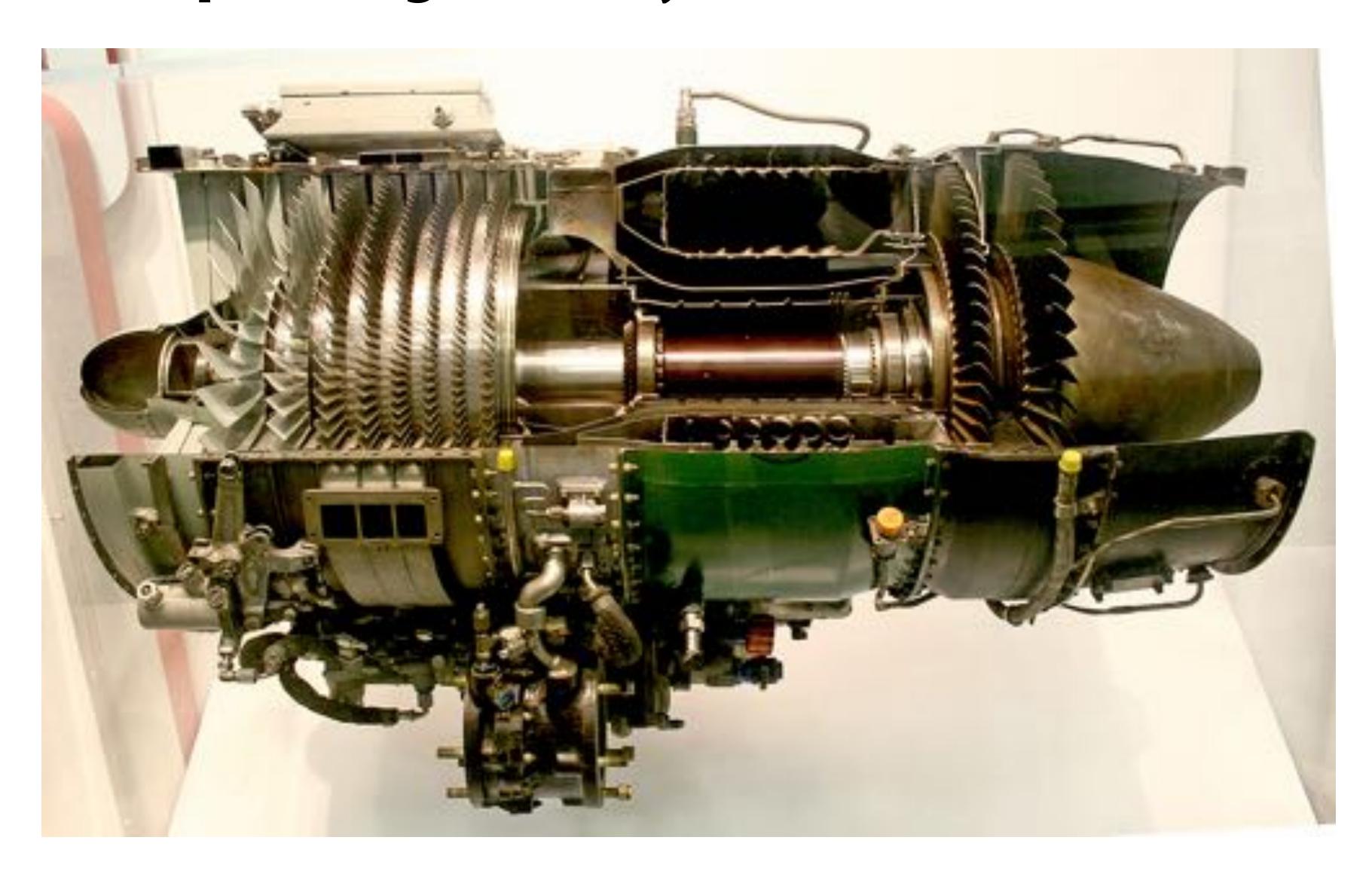


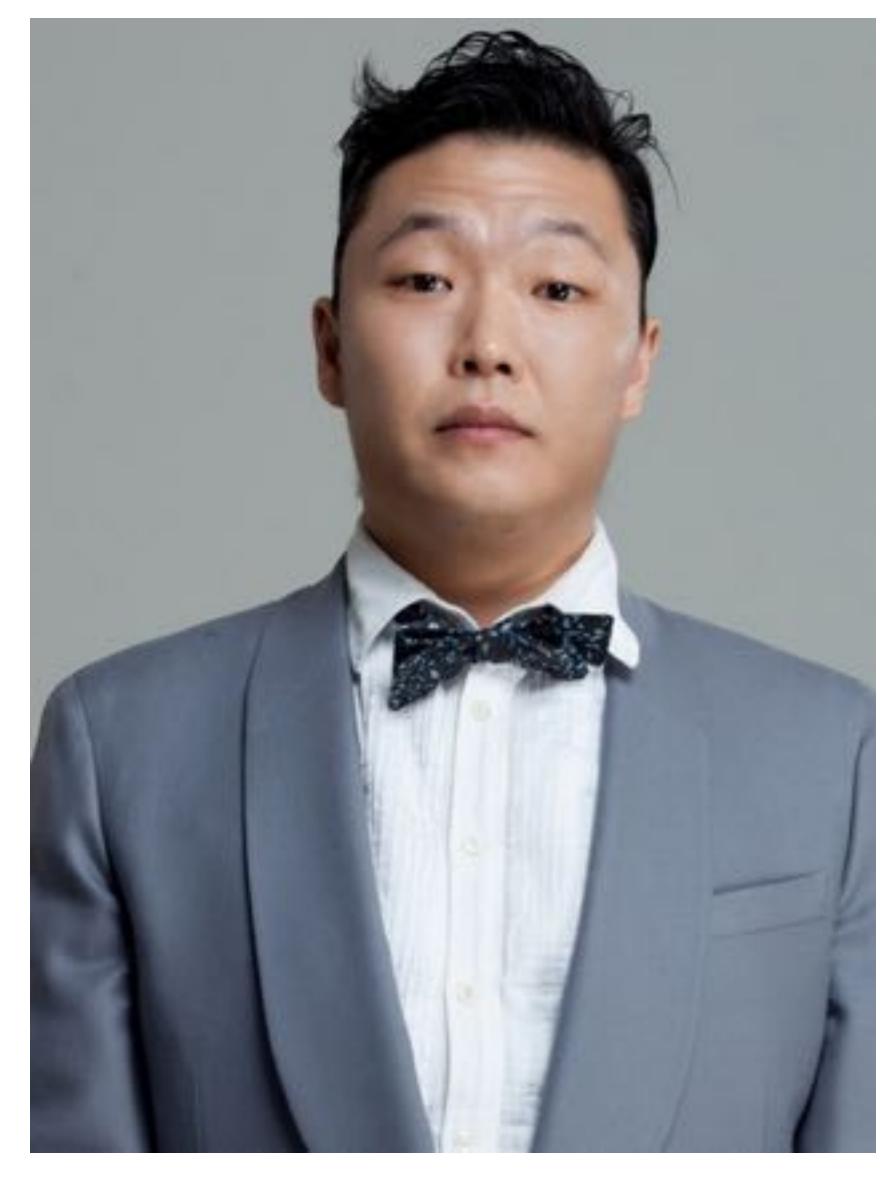
#### **CURVATURE**

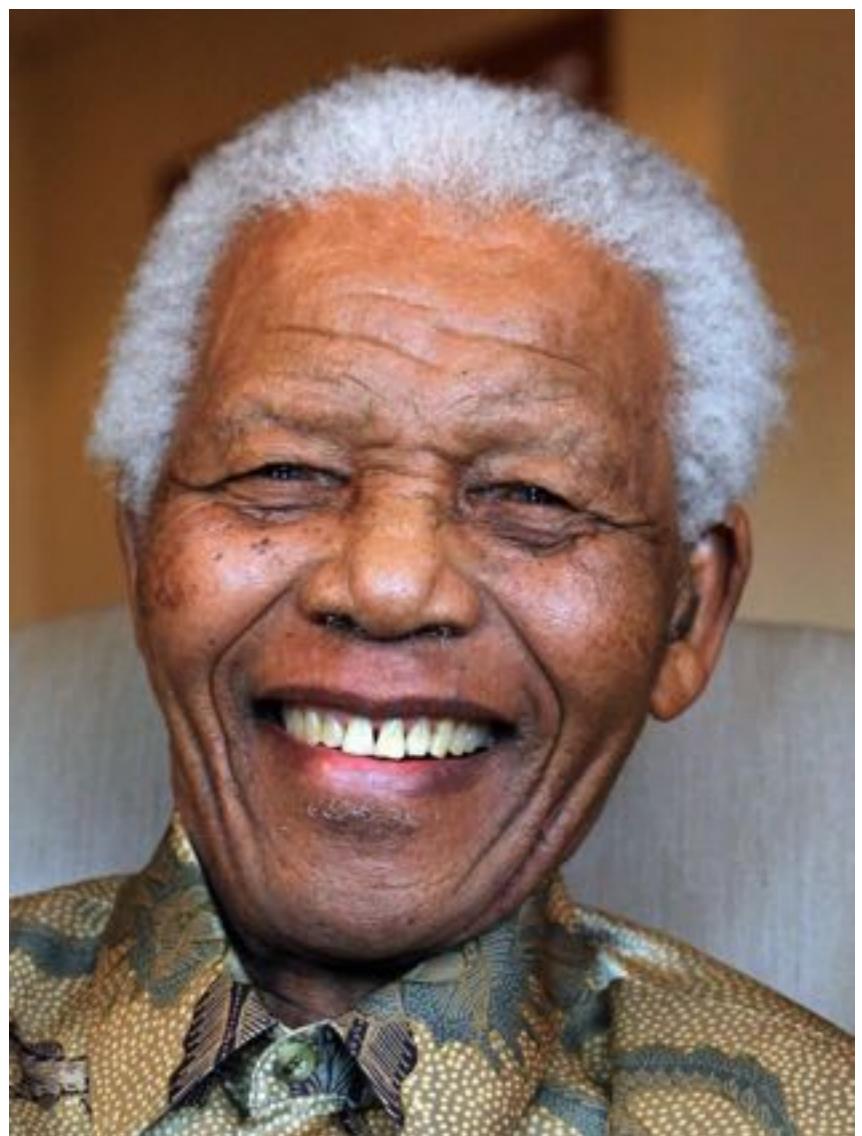
$$\kappa = 1$$

## Given all these options, what's the best way to encode geometry on a computer?







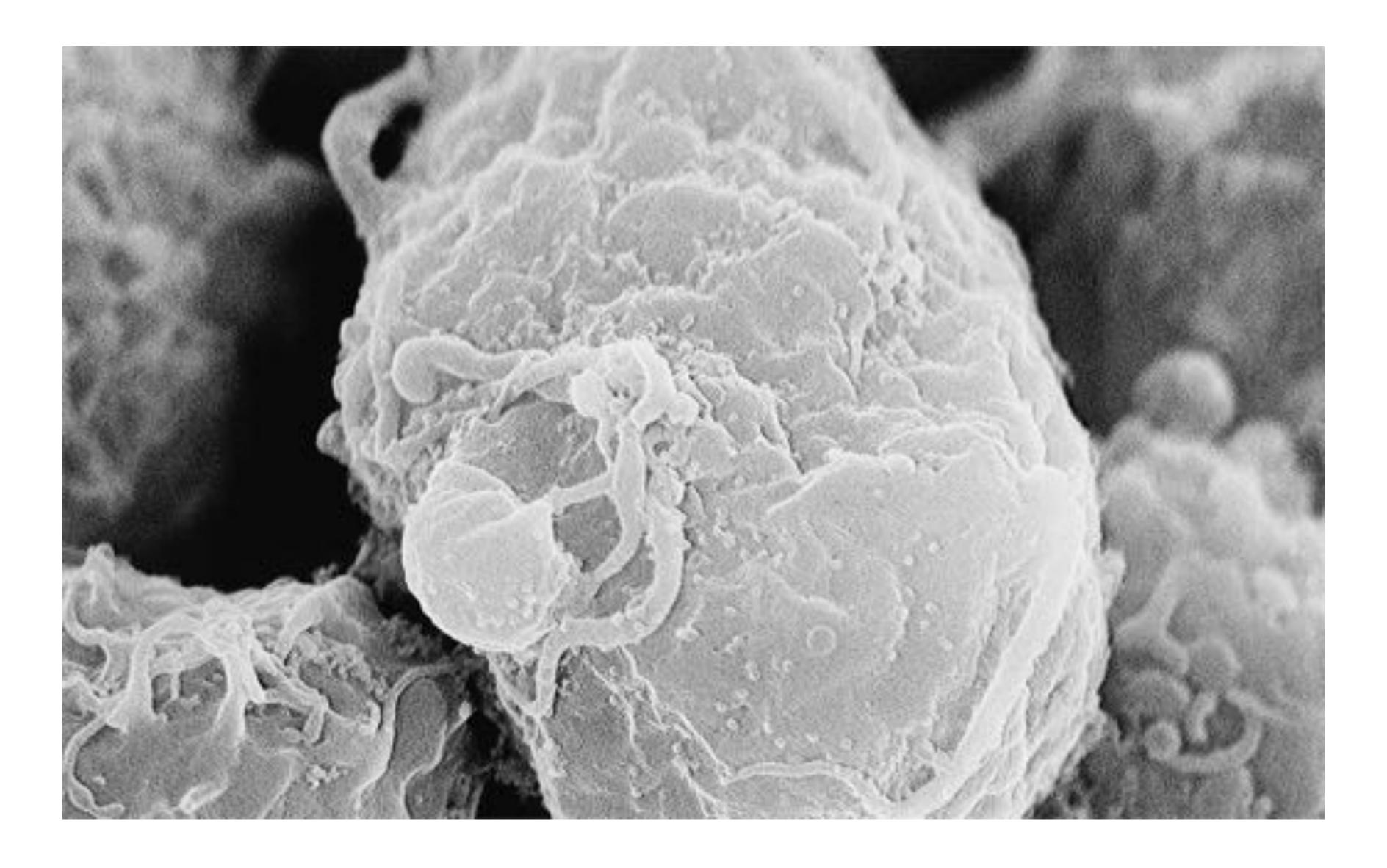


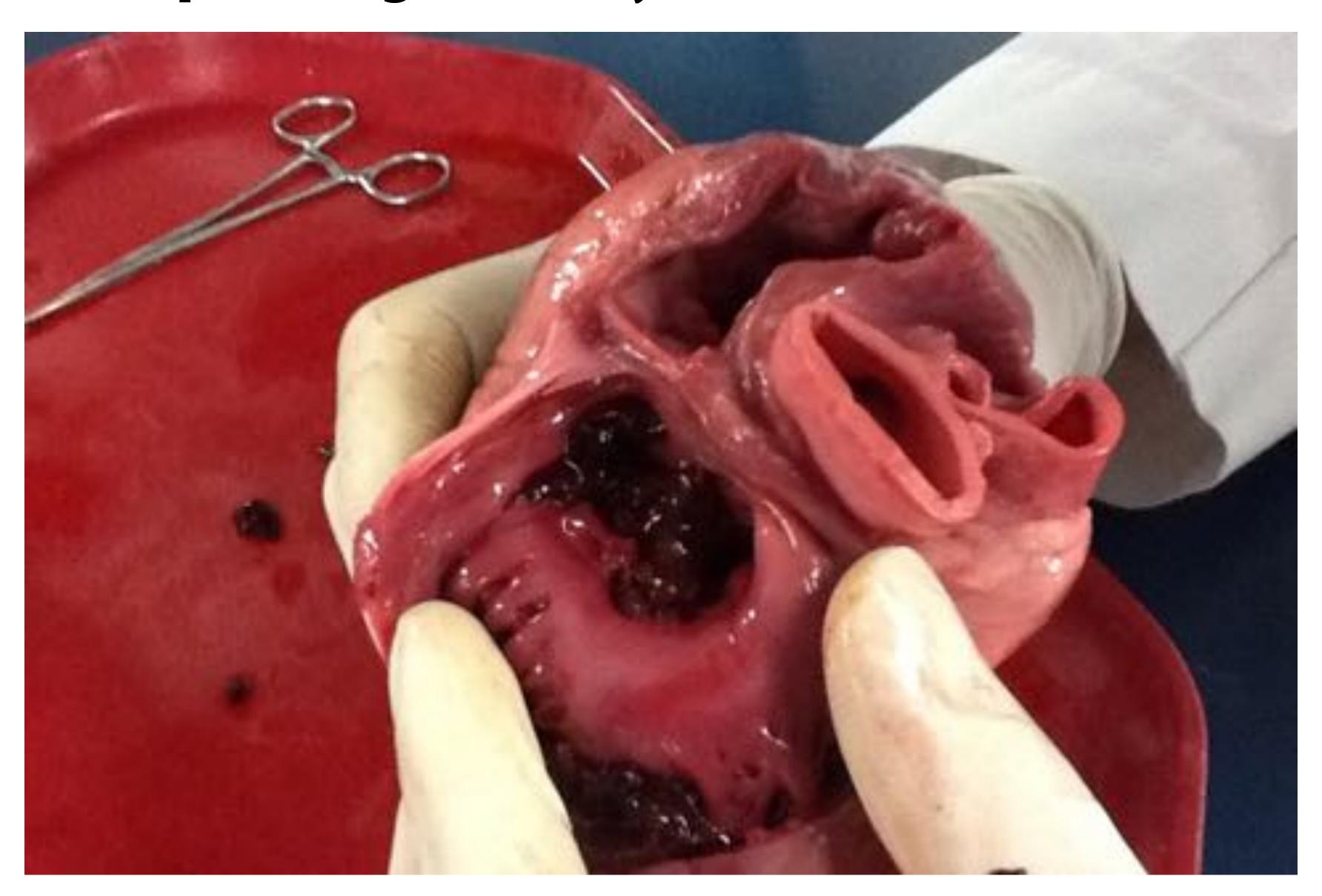














#### No one "best" choice—geometry is hard!

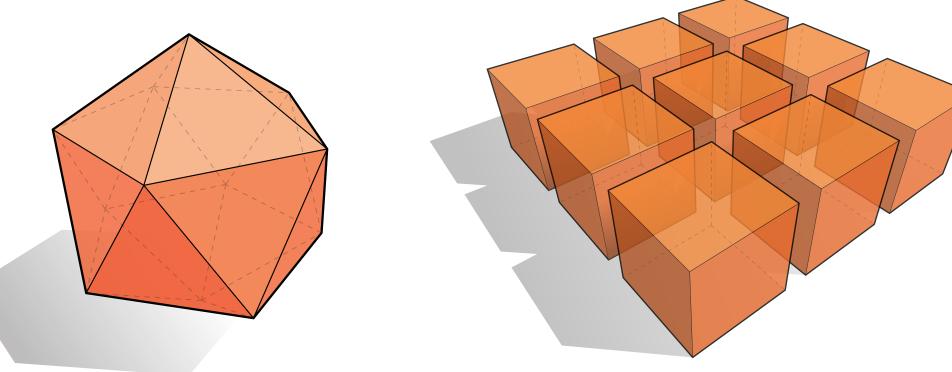
"I hate meshes.
I cannot believe how hard this is.
Geometry is hard."

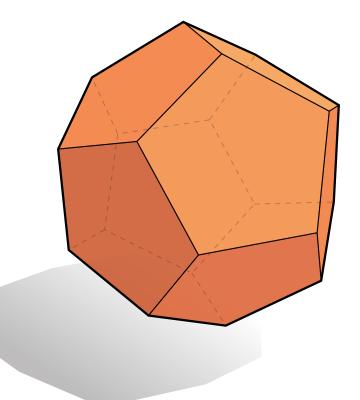
—David Baraff
Senior Research Scientist
Pixar Animation Studios

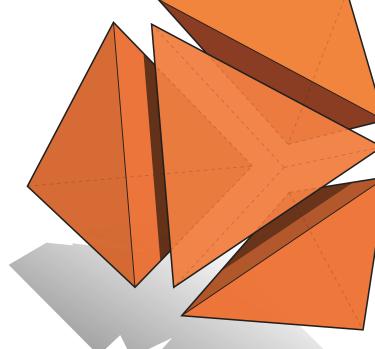
#### Many ways to digitally encode geometry

#### **EXPLICIT**

- point cloud
- polygon mesh
- subdivision, NURBS
- L-systems
- -
- IMPLICIT
  - level set
  - algebraic surface
  - -
- Each choice best suited to a different task/type of

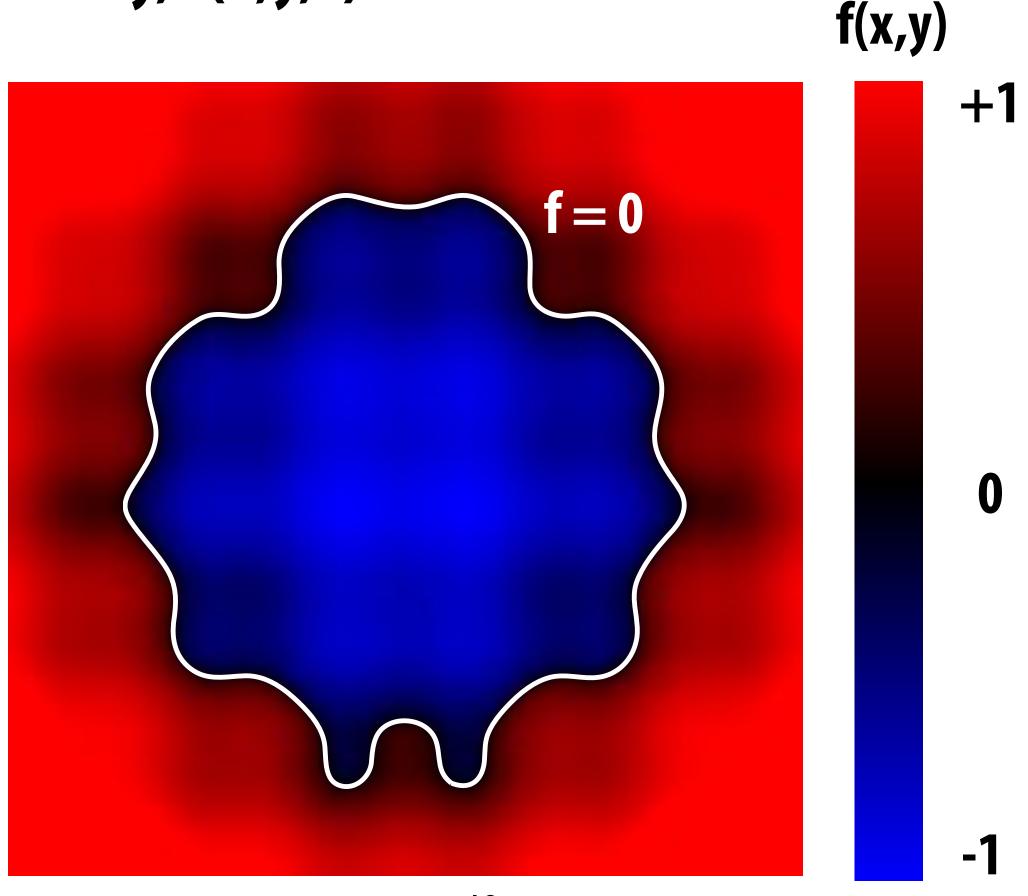




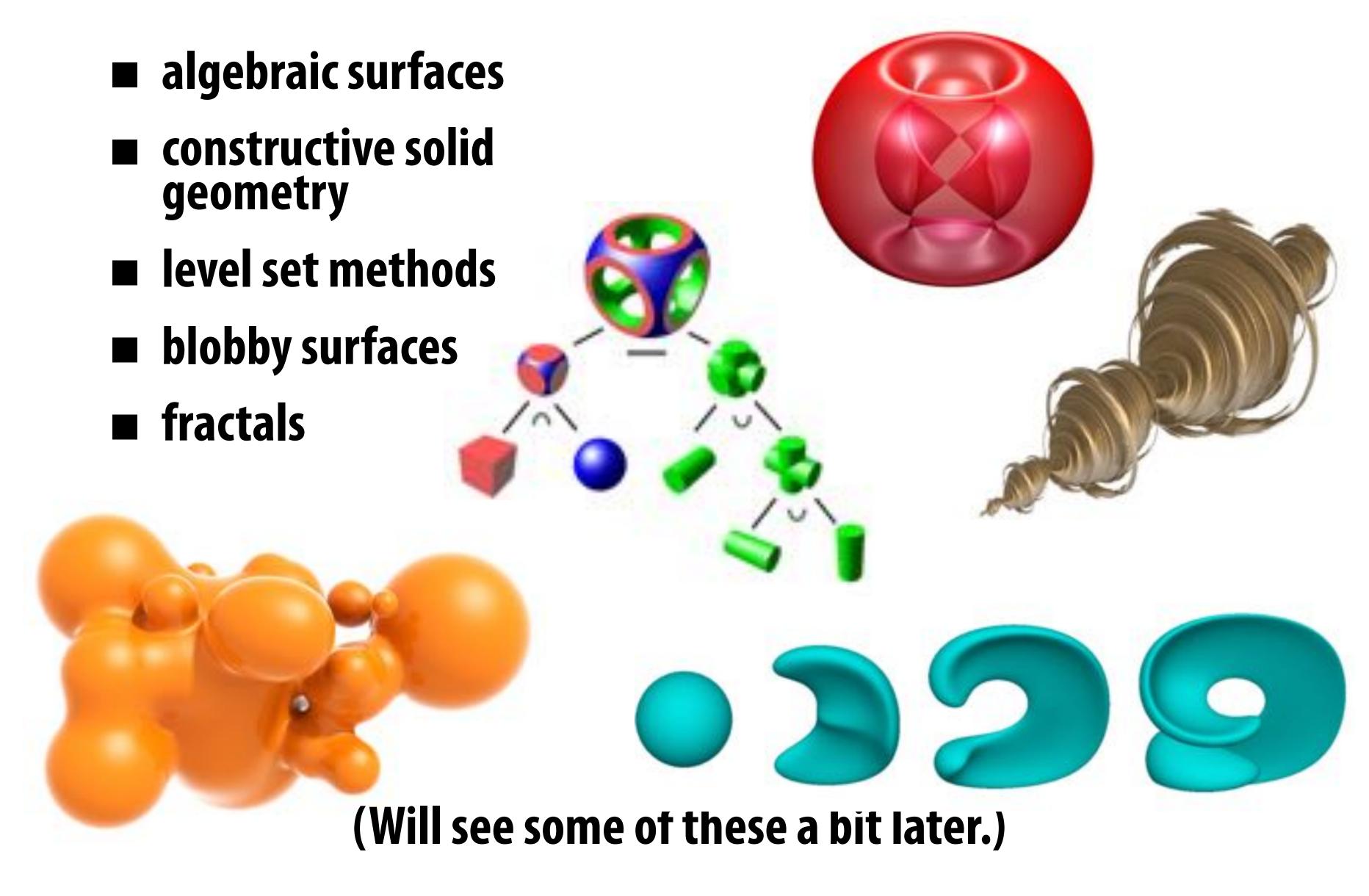


#### "Implicit" Representations of Geometry

- Points aren't known directly, but satisfy some relationship
- E.g., unit sphere is all points x such that  $x^2+y^2+z^2=1$
- More generally, f(x,y,z) = 0



#### Many implicit representations in graphics



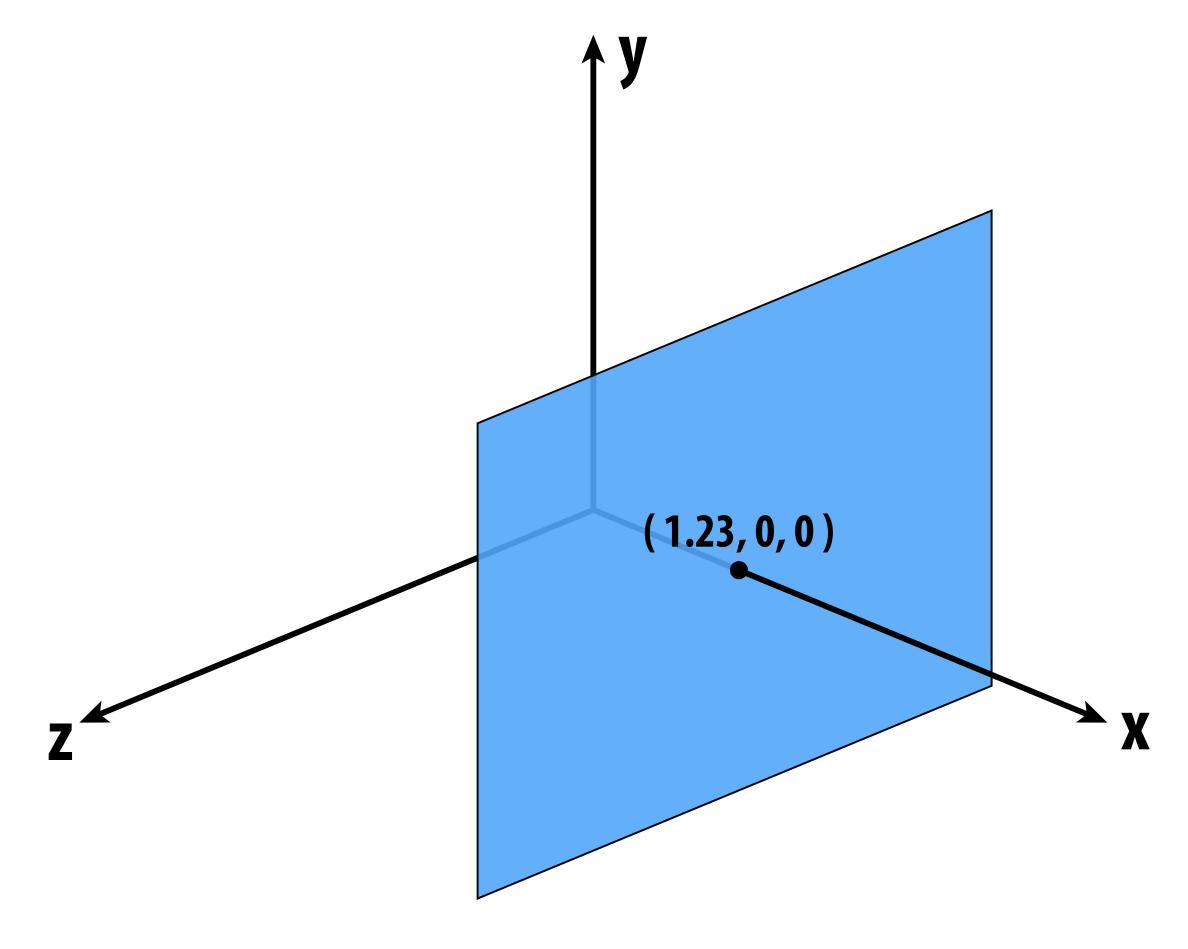
#### But first, let's play a game:

I'm thinking of an implicit surface f(x,y,z)=0.

Find any point on it.

#### Give up?

My function was (x -1.23 (a plane):



Implicit surfaces make some tasks hard (like sampling).

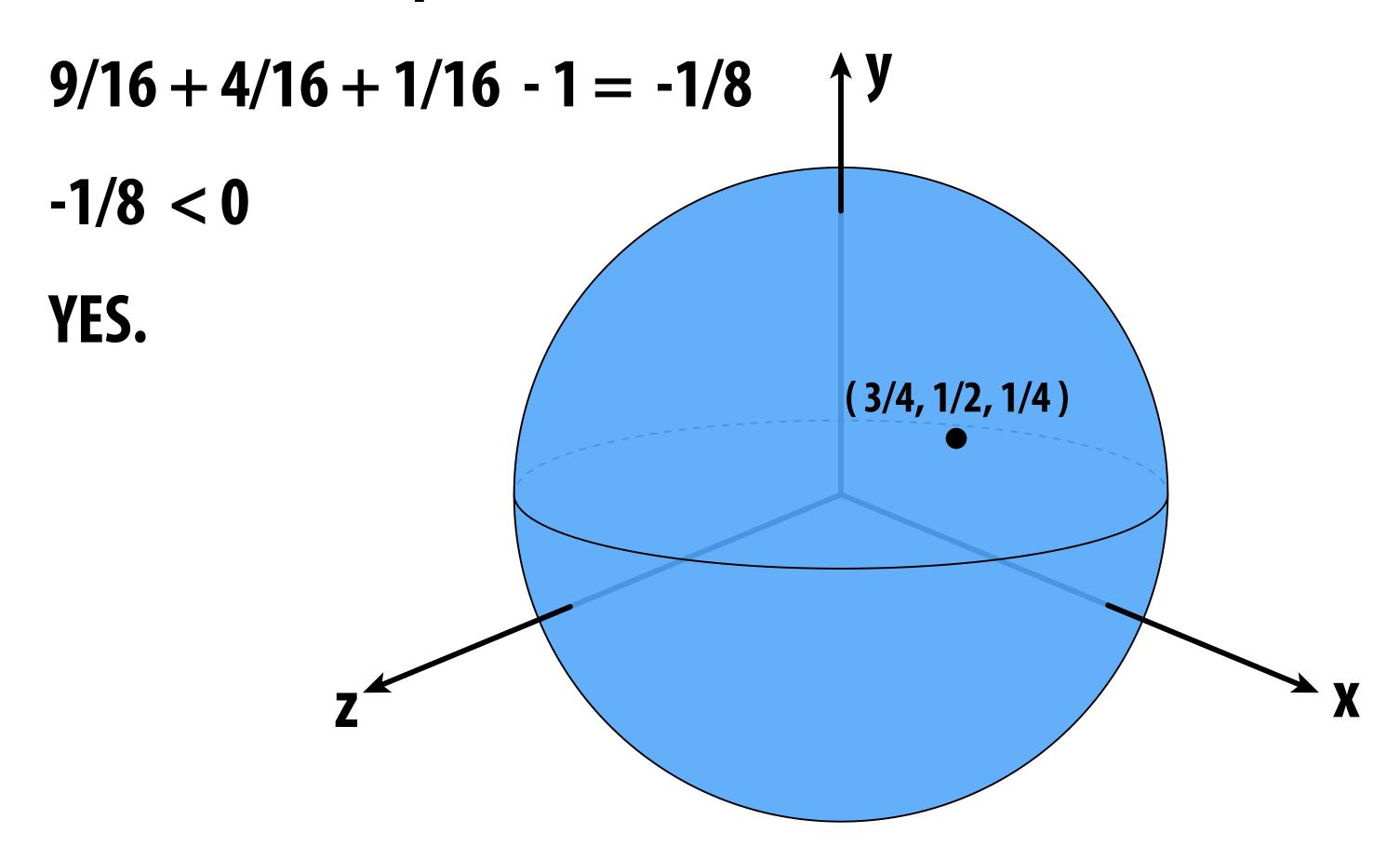
#### Let's play another game.

I have a new surface  $f(x,y,z) = x^2 + y^2 + z^2 - 1$ 

I want to see if a point is inside it.

#### Check if this point is inside the unit sphere

How about the point (3/4, 1/2, 1/4)?



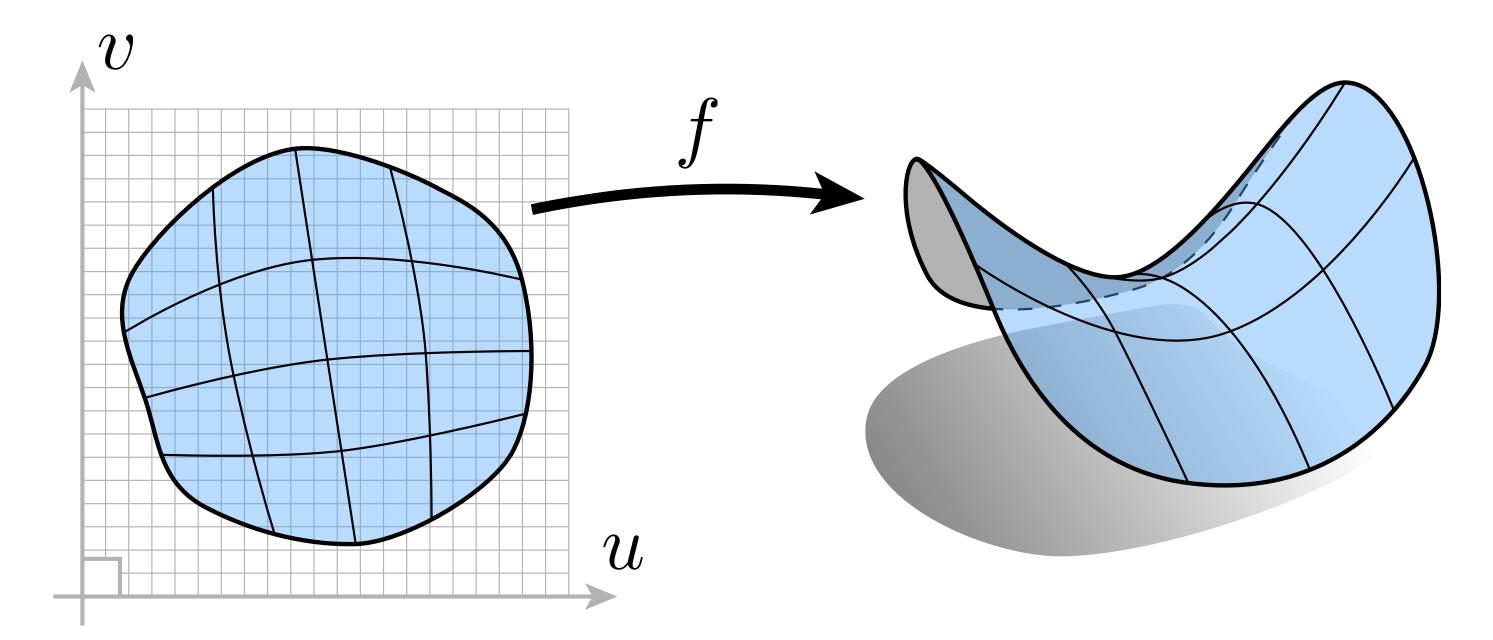
Implicit surfaces make other tasks easy (like inside/outside tests).

#### "Explicit" Representations of Geometry

- All points are given directly
- **■** E.g., points on sphere are

$$(\cos(u)\sin(v), \sin(u)\sin(v), \cos(v)),$$
  
for  $0 \le u < 2\pi$  and  $0 \le v \le \pi$ 

lacksquare More generally:  $f:\mathbb{R}^2 o \mathbb{R}^3; (u,v) \mapsto (x,y,z)$ 

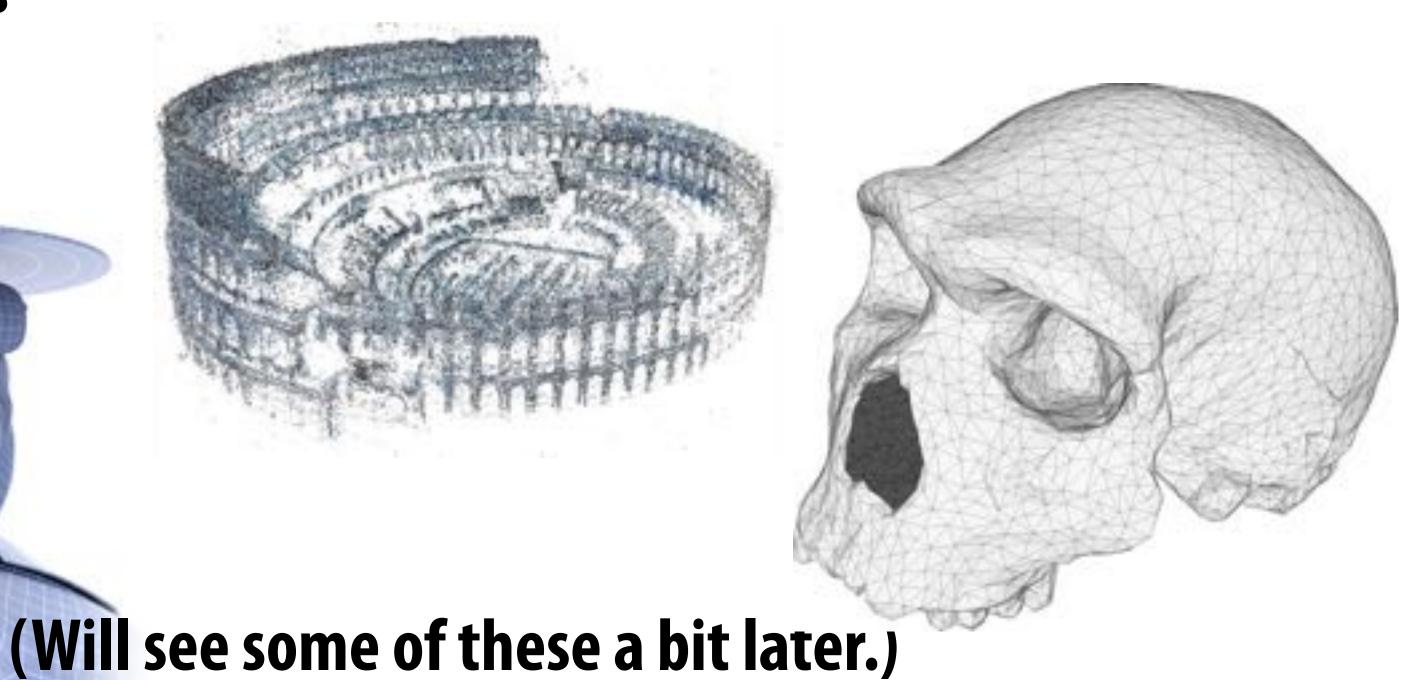


(Might have a bunch of these maps, e.g., one per triangle.)

#### Many explicit representations in graphics

- triangle meshes
- polygon meshes
- subdivision surfaces
- NURBS
- point clouds





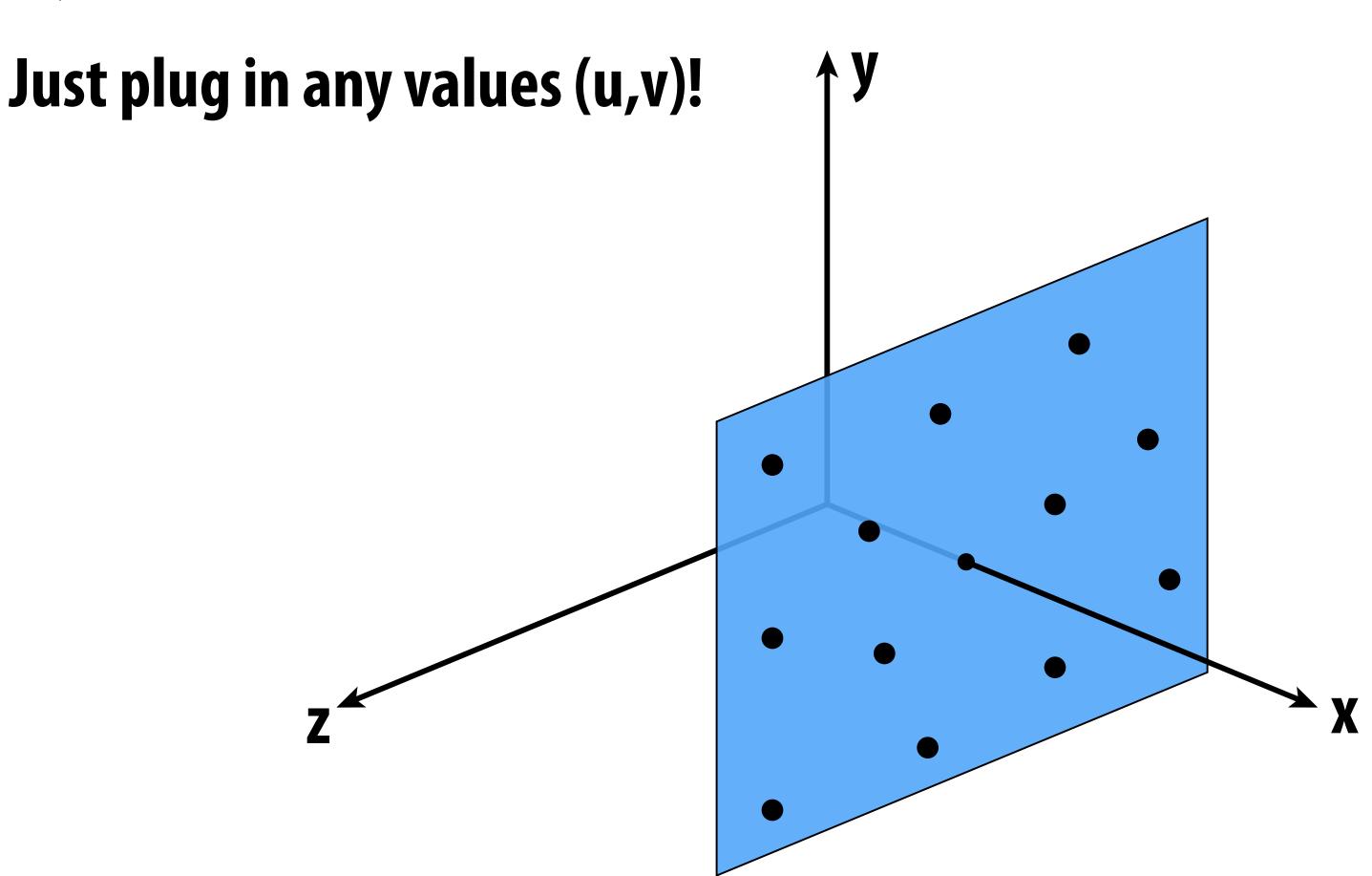
#### But first, let's play a game:

I'll give you an explicit surface.

You give me some points on it.

#### Sampling an explicit surface

My surface is f(u, v) = (1.23, u, v).



Explicit surfaces make some tasks easy (like sampling).

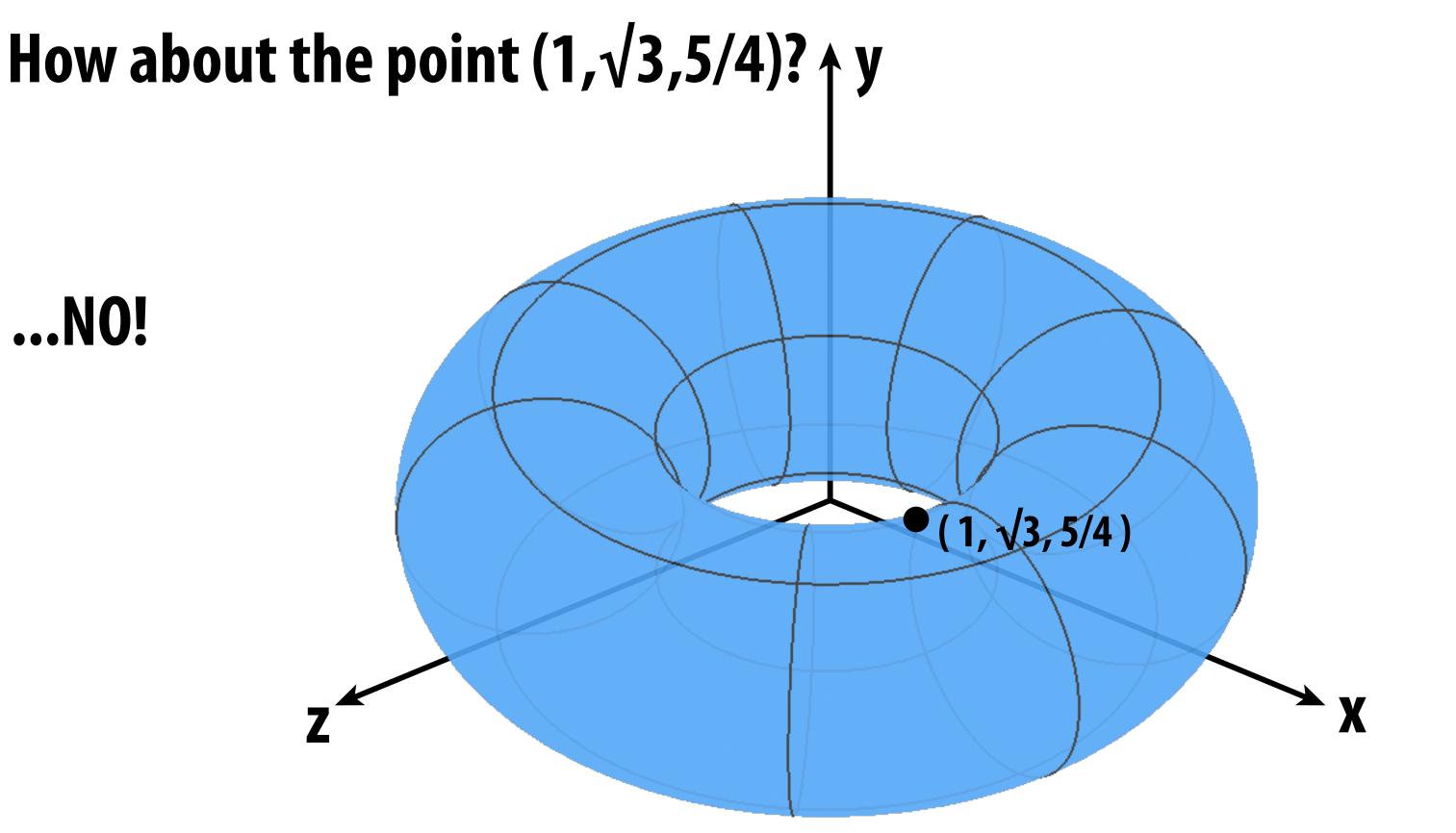
Let's play another game.

I have a new surface f(u,v).

I want to see if a point is inside it.

#### Check if this point is inside the torus

My surface is  $f(u,v) = ((2+\cos(u))\cos(v), (2+\cos(u))\sin(v), \sin(u))$ 



Explicit surfaces make other tasks hard (like inside/outside tests).

# CONCLUSION: Some representations work better than others—depends on the task!

Different representations will also be better suited to different types of geometry.

Let's take a look at some common representations used in computer graphics.

#### Algebraic Surfaces (Implicit)

■ Surface is zero set of a polynomial in x, y, z ("algebraic variety")

Examples:

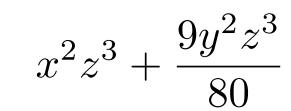
$$x^2 + y^2 + z^2 = 1$$



$$(R - \sqrt{x^2 + y^2})^2 + z^2 = r^2$$

$$x^{2}+y^{2}+z^{2}=1$$
  $(R-\sqrt{x^{2}+y^{2}})^{2}+z^{2}=r^{2}$   $(x^{2}+\frac{9y^{2}}{4}+z^{2}-1)^{3}=$ 

■ What about more complicated shapes?





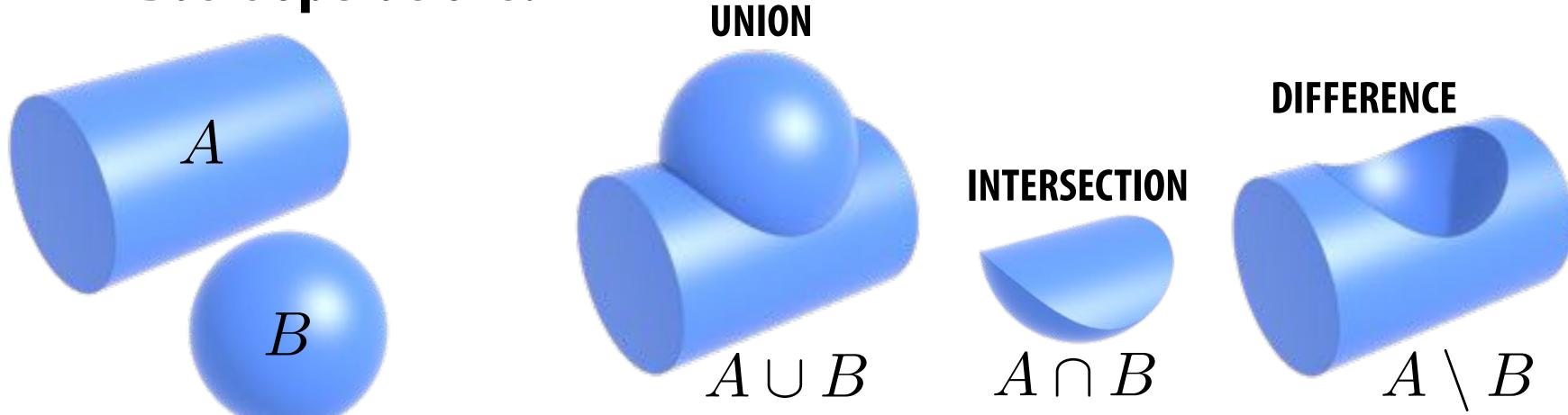


Very hard to come up with polynomials!

#### Constructive Solid Geometry (Implicit)

■ Build more complicated shapes via Boolean operations

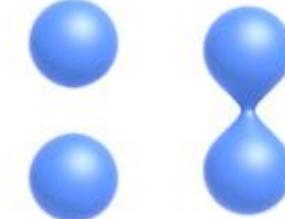
**■** Basic operations:



 $\blacksquare \ \, \textbf{Then chain together expressions} \quad (X \cap Y) \setminus (U \cup V \cup W)$ 

#### **Blobby Surfaces (Implicit)**

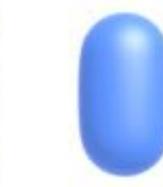
■ Instead of Booleans, gradually blend surfaces together:

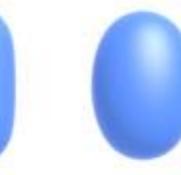


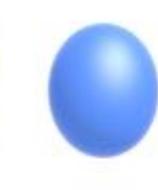


















Easier to understand in 2D:

$$\phi_p(x) := e^{|x-p|^2}$$
 (Gaussian centered at p)

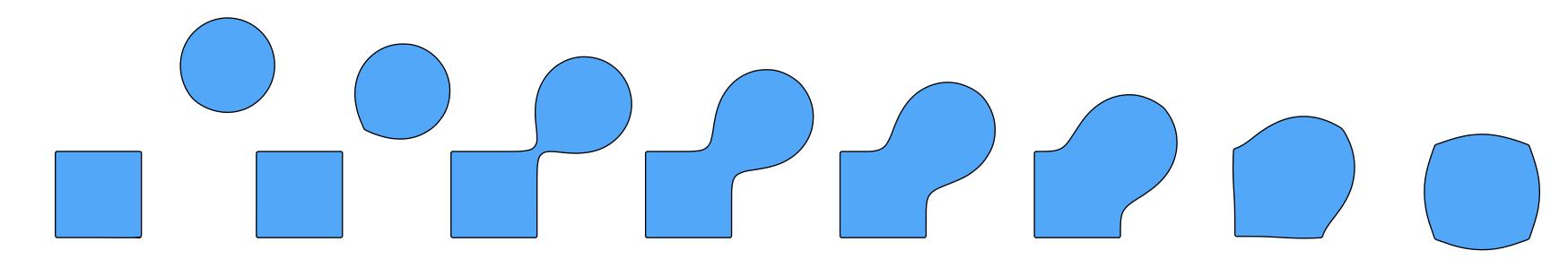
$$f := \phi_p + \phi_q$$

(Sum of Gaussians centered at different points)



#### Blending Distance Functions (Implicit)

- A distance function gives distance to closest point on object
- Can blend any two distance functions d<sub>1</sub>, d<sub>2</sub>:



■ Similar strategy to points, though many possibilities. E.g.,

$$f(x) := e^{d_1(x)^2} + e^{d_2(x)^2} - \frac{1}{2}$$

- Appearance depends on exactly how we combine functions
- Q: How do we implement a simple Boolean union?
- A: Just take the minimum:  $f(x) = min(d_1(x), d_2(x))$

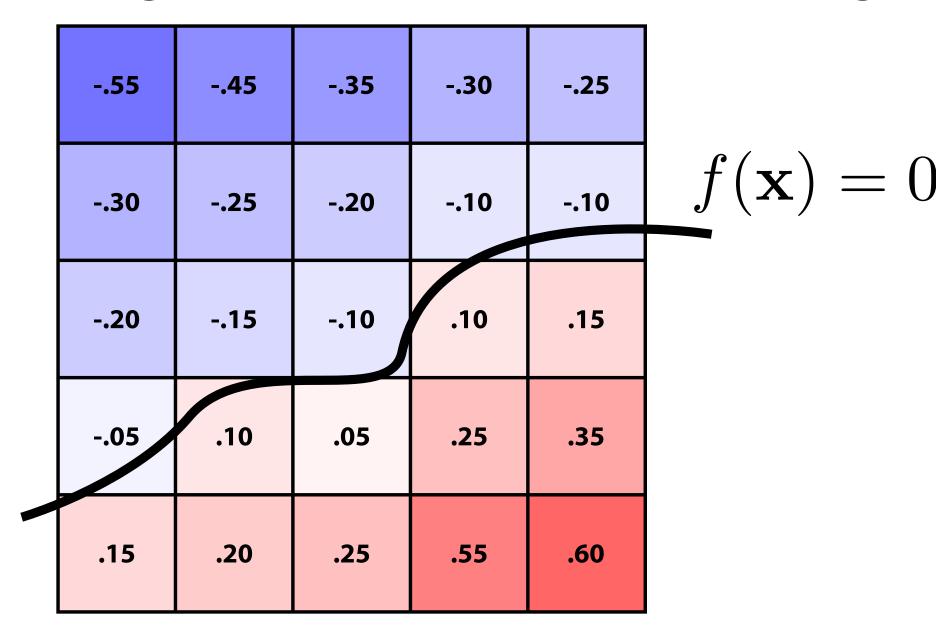
## Scene of pure distance functions (not easy!)



See <a href="http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm">http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm</a>

## Level Set Methods (Implicit)

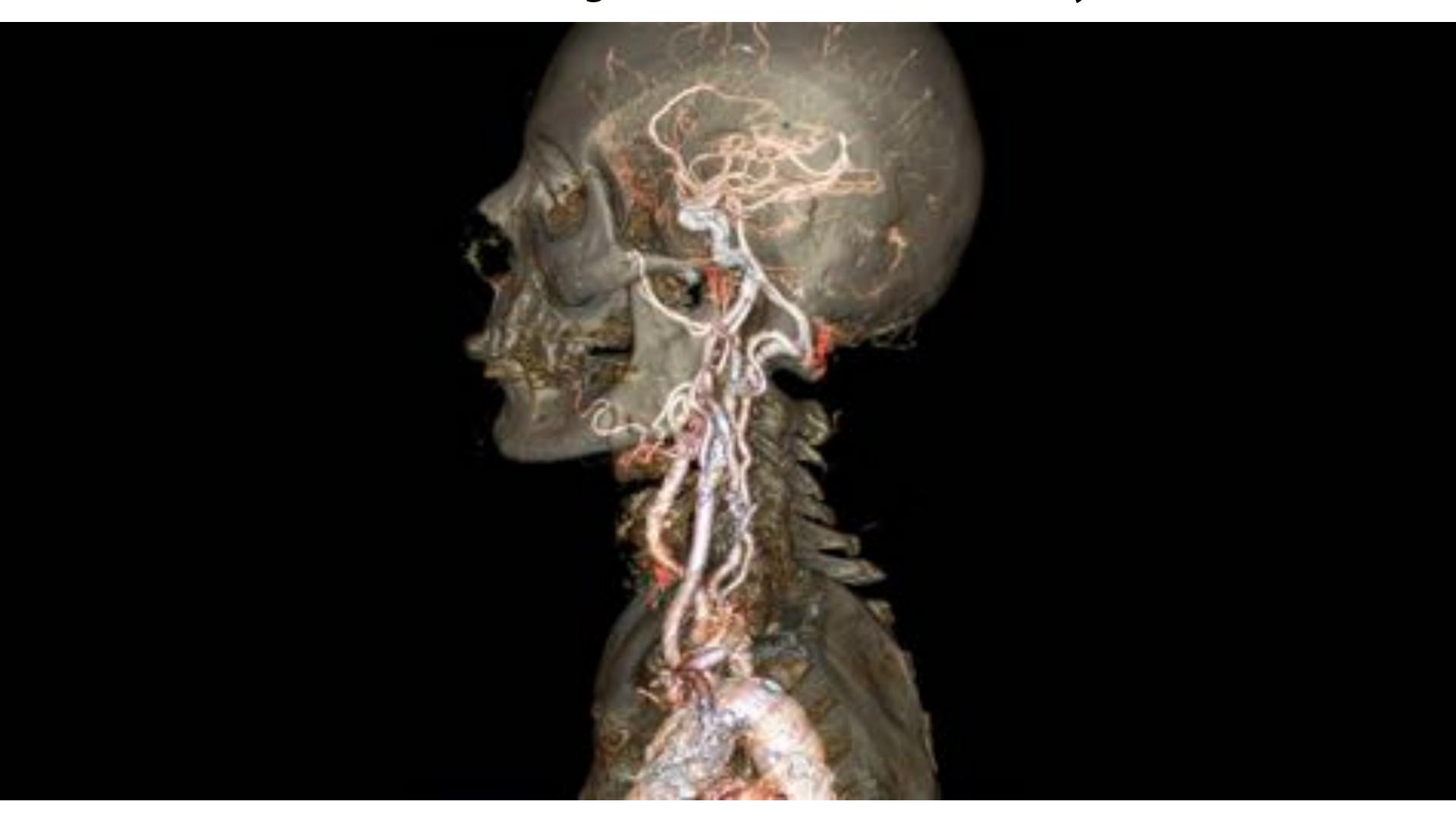
- Implicit surfaces have some nice features (e.g., merging/ splitting)
- But, hard to describe complex shapes in closed form
- Alternative: store a grid of values approximating function



Surface is found where interpolated values equal zero

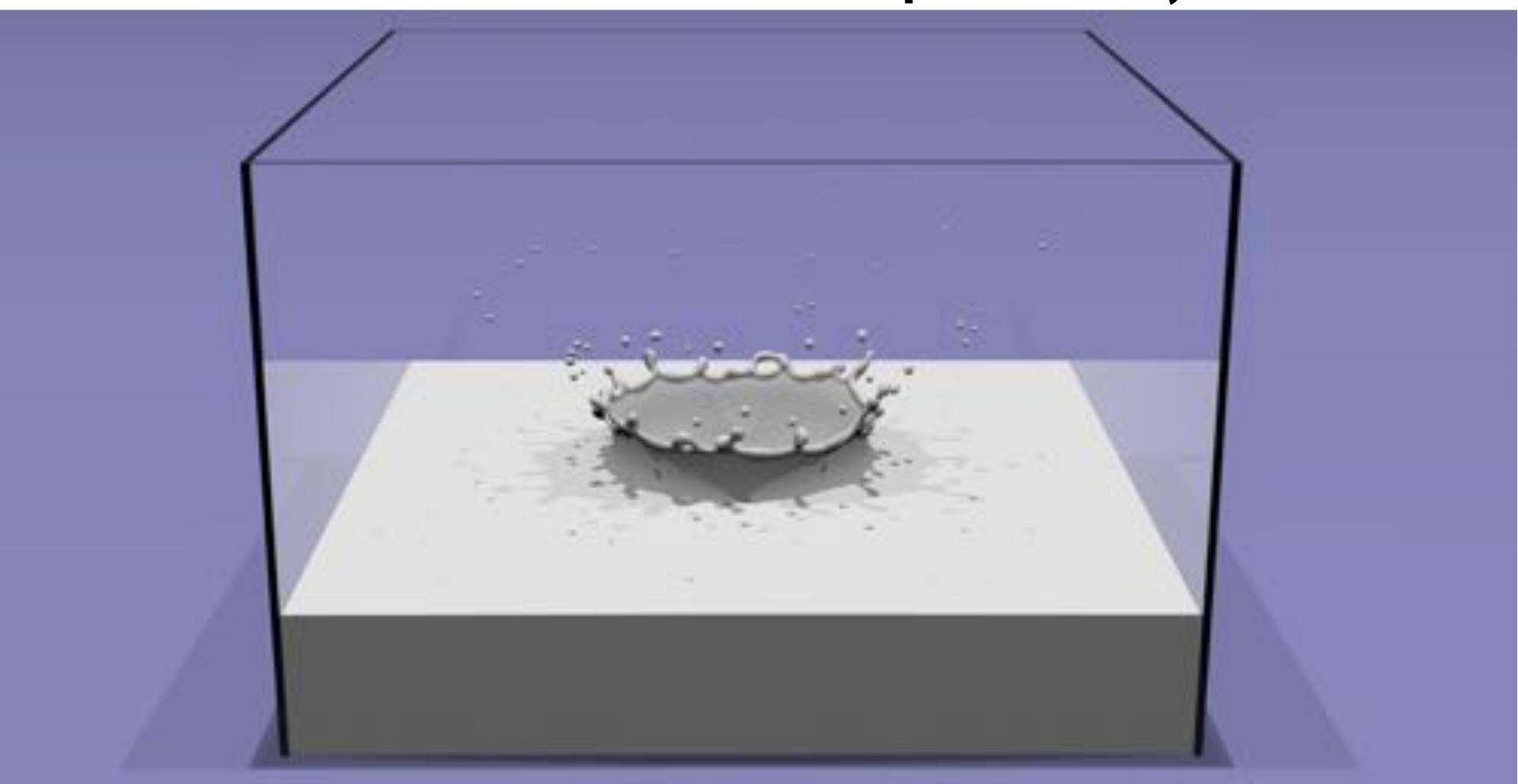
#### Level Sets from Medical Data (CT, MRI, etc.)

■ Level sets encode, e.g., constant tissue density



## Level Sets in Physical Simulation

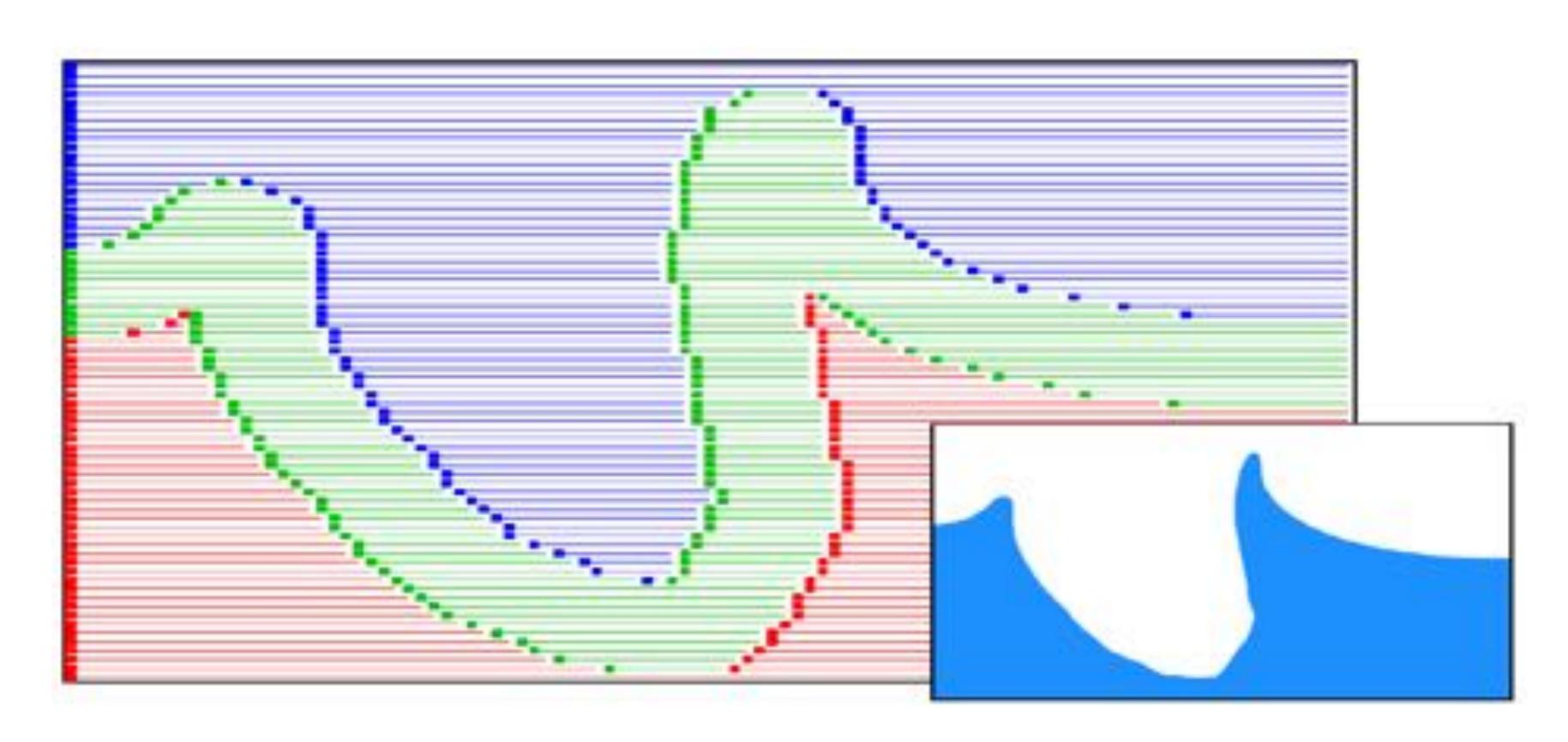
**■** Level set encodes distance to air-liquid boundary



See <a href="http://physbam.stanford.edu">http://physbam.stanford.edu</a>

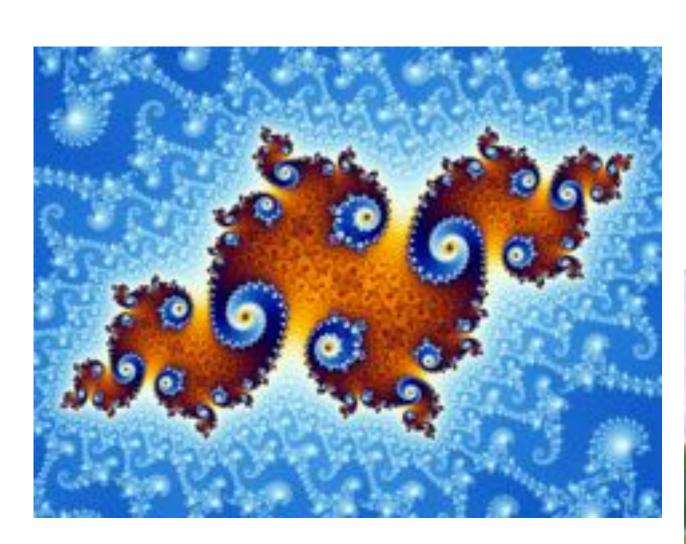
## Level Set Storage

- Drawback: storage for 2D surface is now O(n³)
- Can reduce cost by storing only a narrow band around surface:



## Fractals (Implicit)

- No precise definition; exhibit self-similarity, detail at all scales
- New "language" for describing natural phenomena
- Hard to control shape!

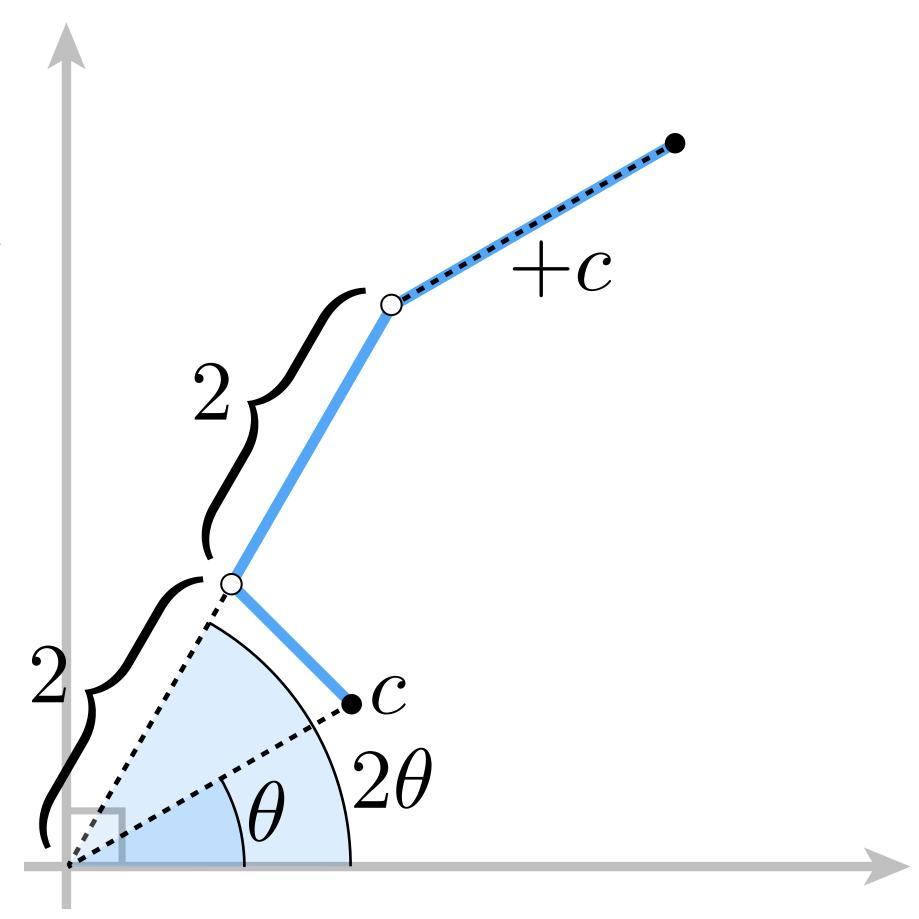






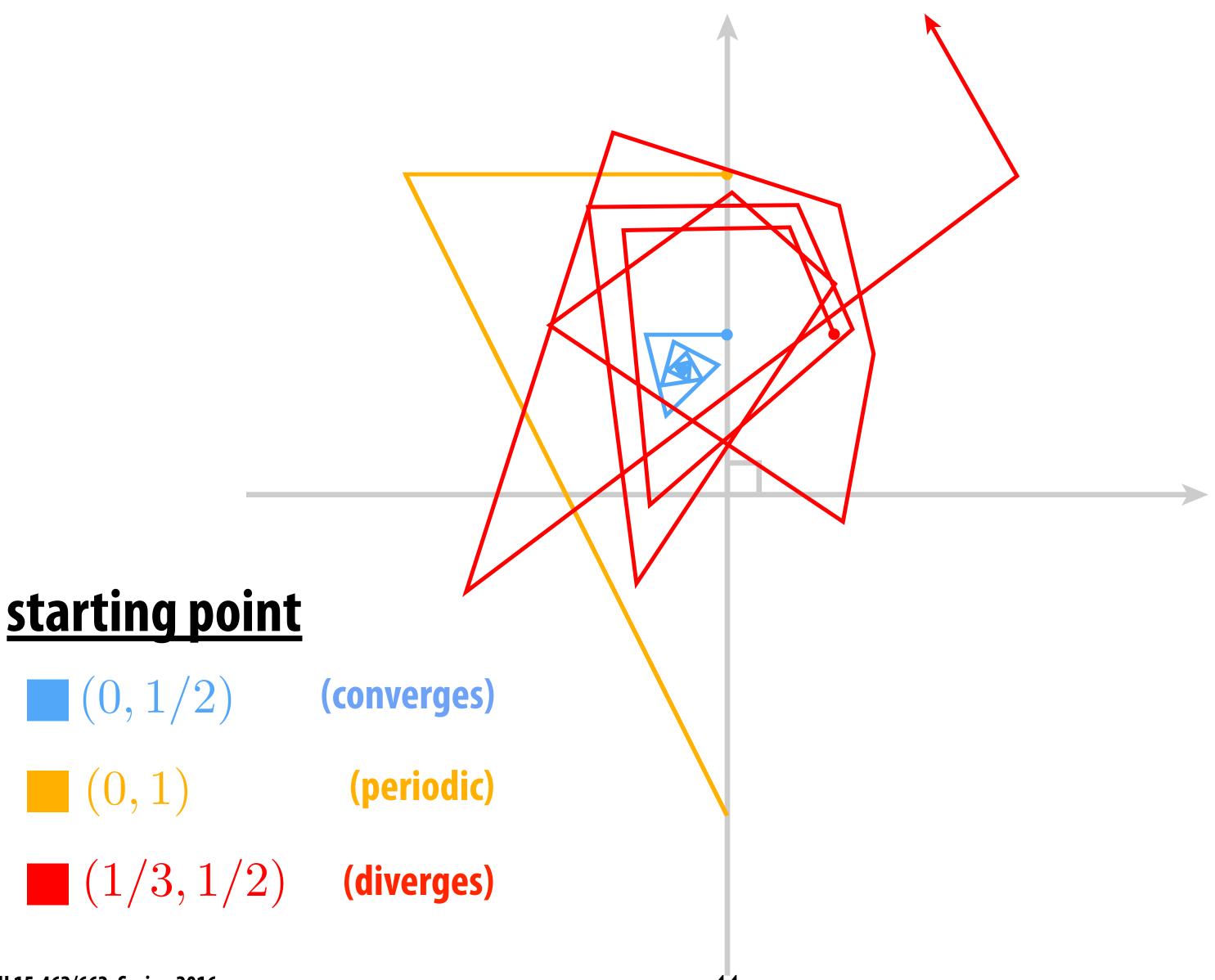
#### Mandelbrot Set - Definition

- For each point c in the plane:
  - double the angle
  - square the magnitude
  - add the original point c
  - repeat

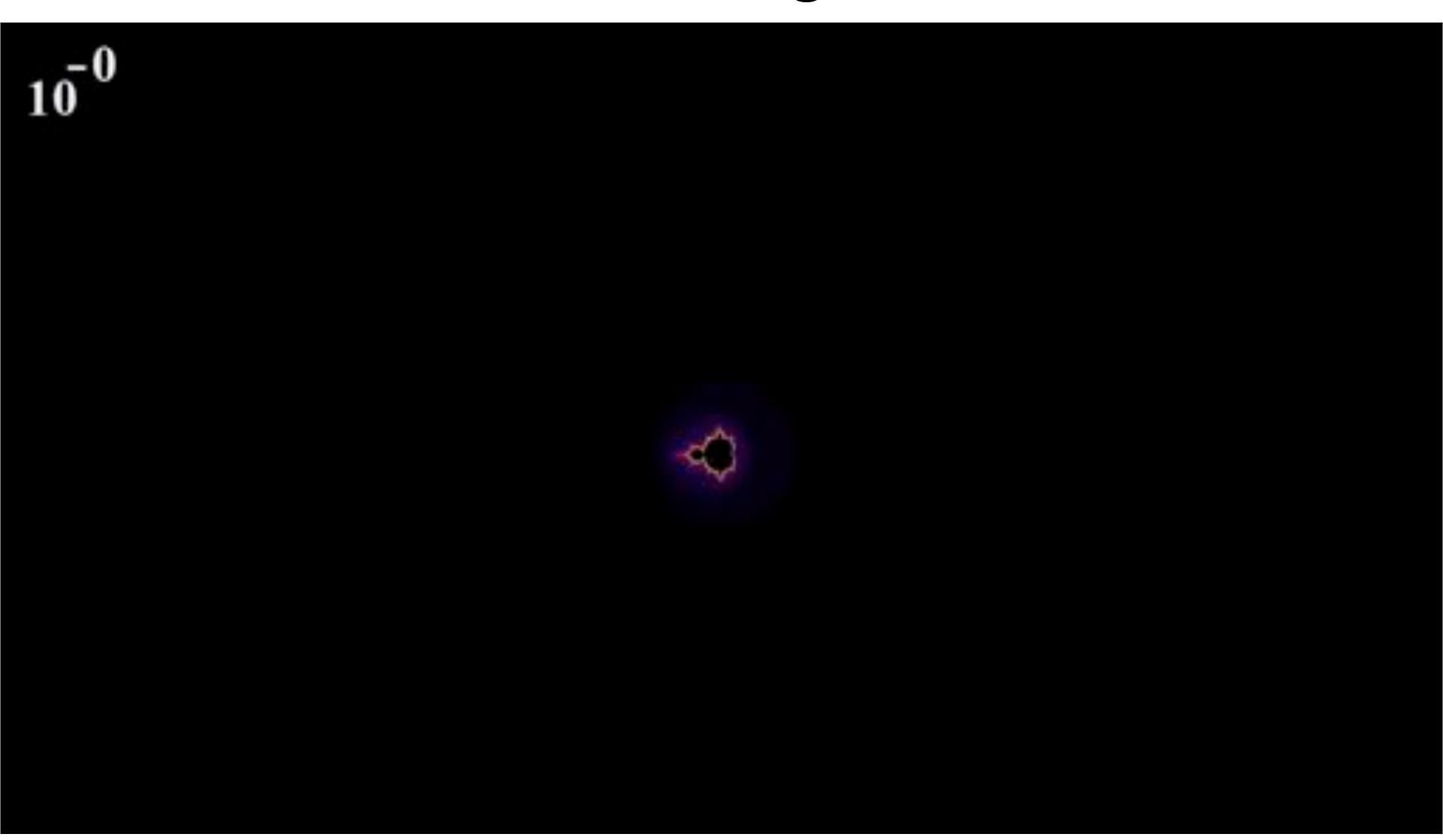


If the point remains bounded (never goes to  $\infty$ ), it's in the set.

### Mandelbrot Set - Examples



## Mandelbrot Set - Zooming In



(Colored according to how quickly each point diverges/converges.)

### Iterated Function Systems



Scott Draves (CMU Alumn) - see <a href="http://electricsheep.org">http://electricsheep.org</a>

#### Implicit Representations - Pros & Cons

#### ■ Pros:

- description can be very compact (e.g., a polynomial)
- easy to determine if a point is in our shape (just plug it in!)
- other queries may also be easy (e.g., distance to surface)
- for simple shapes, exact description/no sampling error
- easy to handle changes in topology (e.g., fluid)

#### ■ Cons:

- expensive to find all points in the shape (e.g., for drawing)
- very difficult to model complex shapes

## What about explicit representations?

# Point Cloud (Explicit)

**■** Easiest representation: list of points (x,y,z)

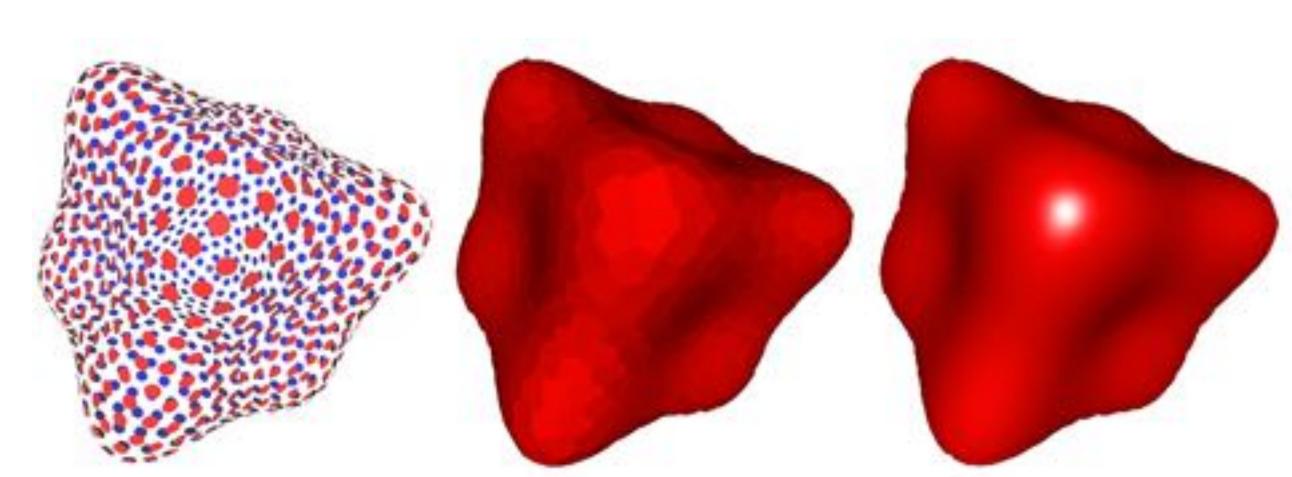
Often augmented with normals

■ Easily represent any kind of geometry

Useful for LARGE datasets (>>1 point/pixel)

Difficult to draw in undersampled regions

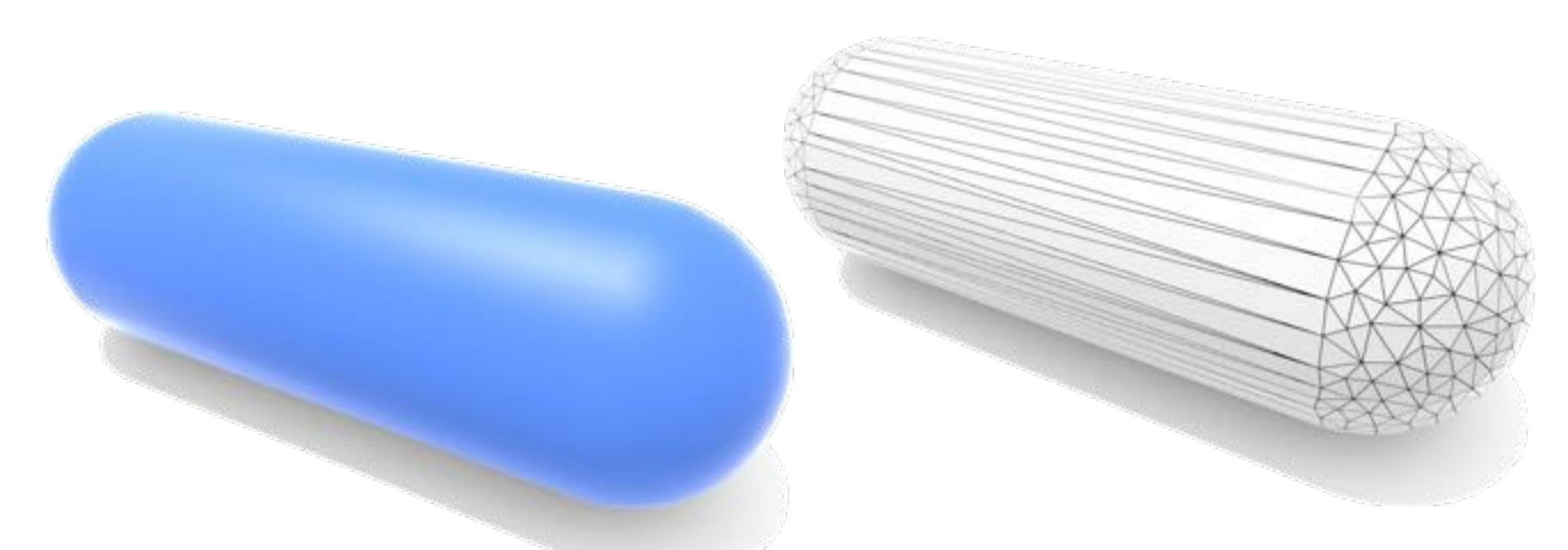
■ Hard to do processing / simulation





# Polygon Mesh (Explicit)

- Store vertices and polygons (most often triangles or quads)
- Easier to do processing/simulation, adaptive sampling
- More complicated data structures
- **■** Perhaps most common representation in graphics

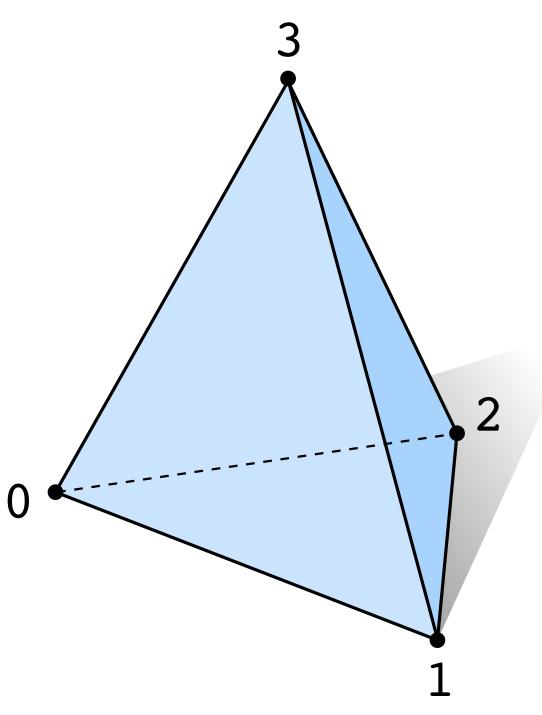


(Much more about polygon meshes in upcoming lectures!)

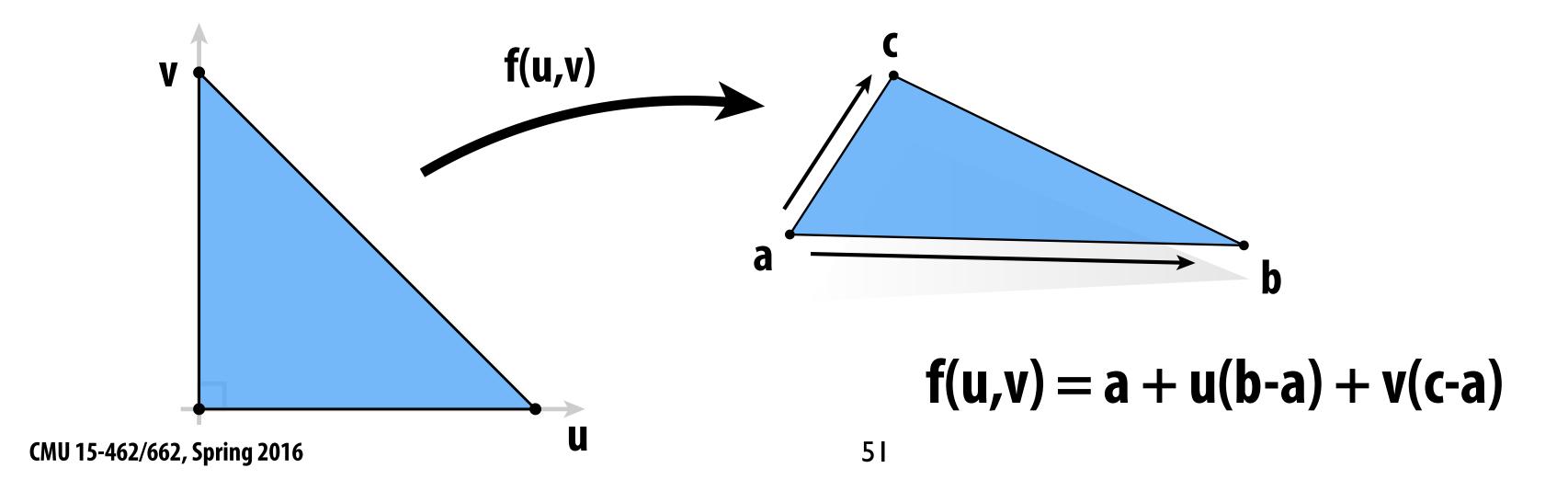
# Triangle Mesh (Explicit)

- Store vertices as triples of coordinates (x,y,z)
- Store triangles as triples of indices (i,j,k)
  VERTICES
  TRIANGLES
- **■** E.g., tetrahedron:

| •  | x          | Y  | Z  |  |
|----|------------|----|----|--|
| 0: | -1         | -1 | -1 |  |
| 1: | 1          | -1 | 1  |  |
| 2: | 1          | 1  | -1 |  |
| 3: | <b>-</b> 1 | 1  | 1  |  |

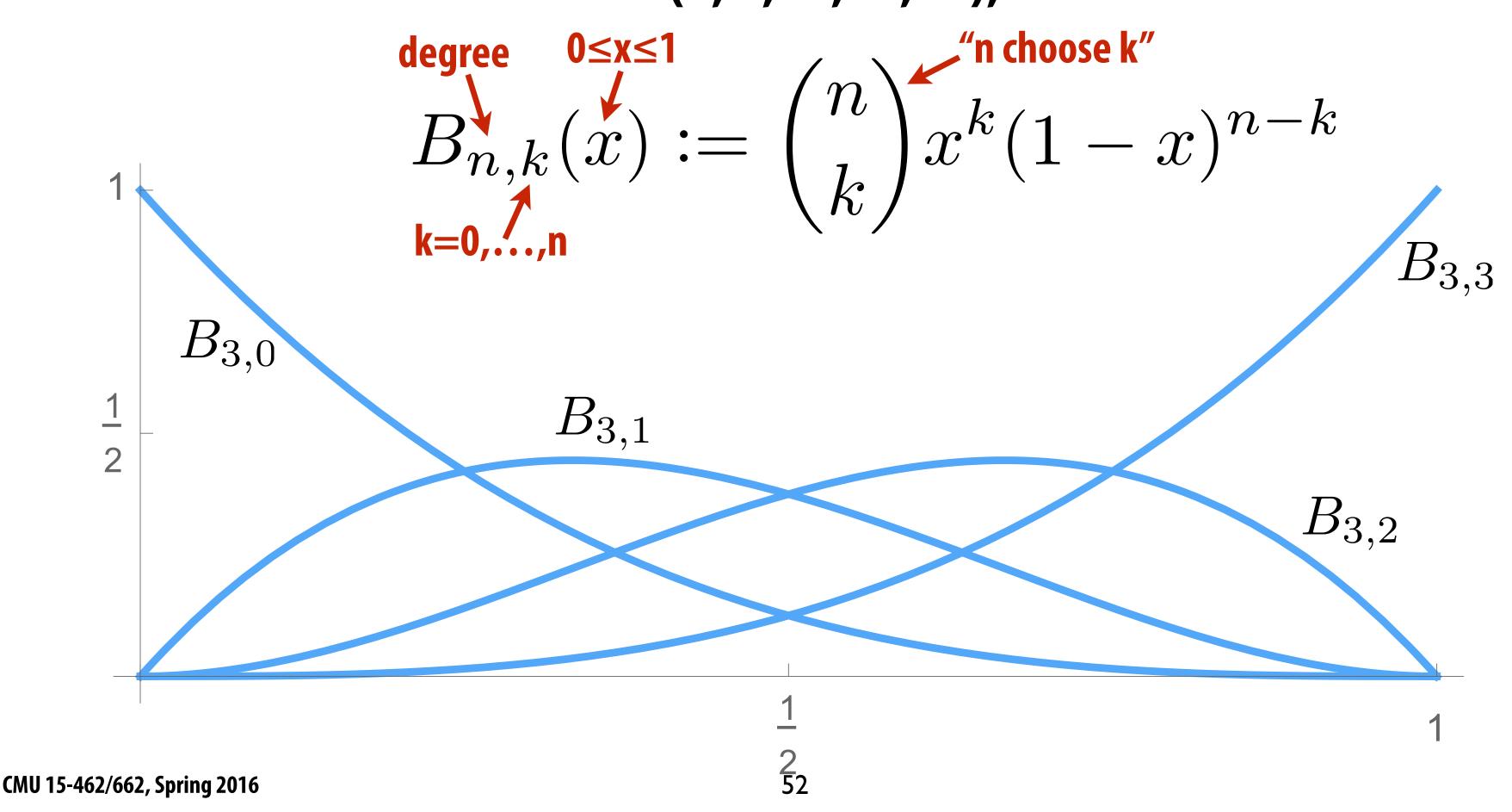


Can think of triangle as affine map from plane into space:



#### Bernstein Basis

- Why limit ourselves to just affine functions?
- More flexibility by using higher-order polynomials
- Instead of usual basis  $(1, x, x^2, x^3, ...)$ , use Bernstein basis:



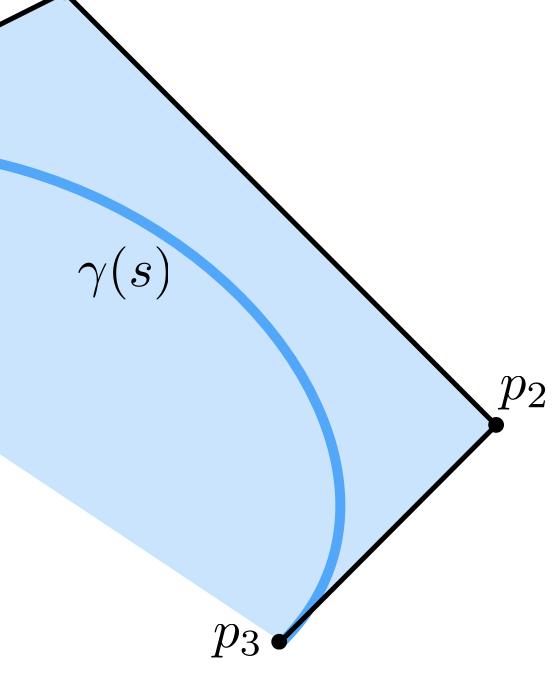
## Bézier Curves (Explicit)

■ A Bézier curve is a curve expressed in the Bernstein basis:

 $p_0$ 

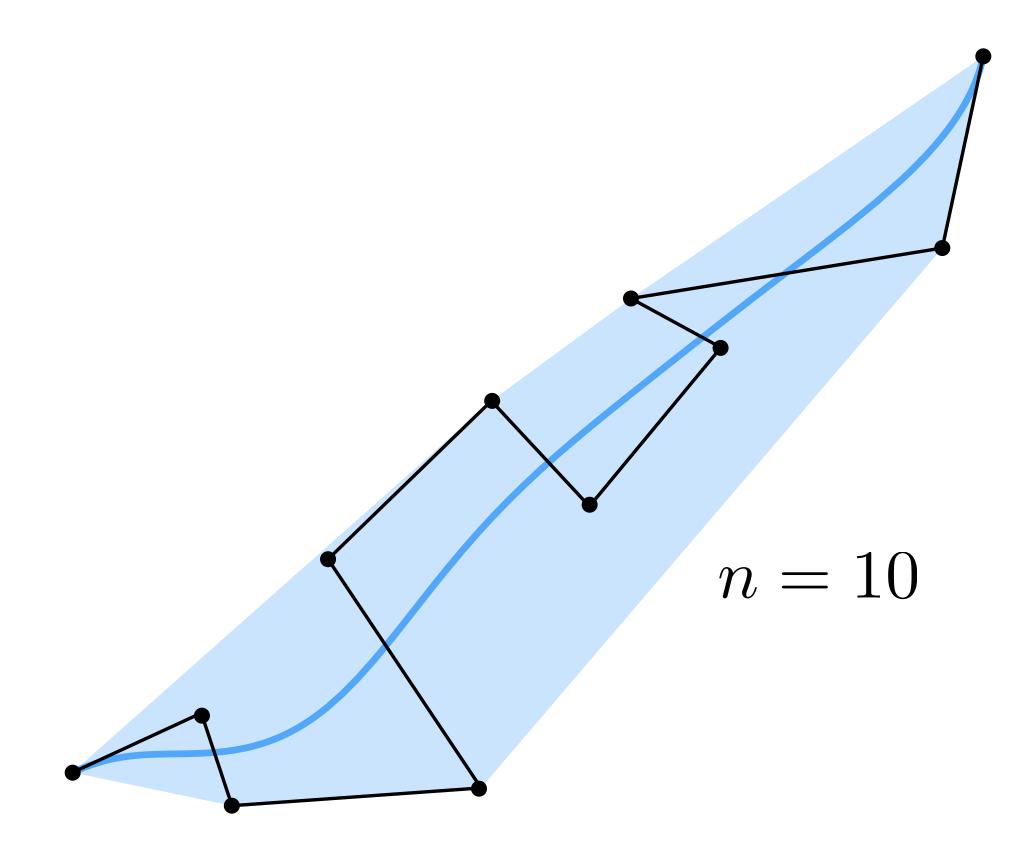
$$\gamma(s) := \sum_{k=0}^{n} B_{n,k}(s) p_k$$
 control points 
$$p_1$$

- For n=1, just get a line segment!
- For n=3, get "cubic Bézier":
- Important features:
  - 1. interpolates endpoints
  - 2. tangent to end segments
  - 3. contained in convex hull (nice for rasterization)



## Higher-order Bézier Curves?

- What if we want a more interesting curve?
- High-degree Bernstein polynomials don't interpolate well:



Very hard to control!

## **B-Spline Curves (Explicit)**

- Instead, use many low-order Bézier curve (B-spline)
- Widely-used technique in software (Illustrator, Inkscape, etc.)



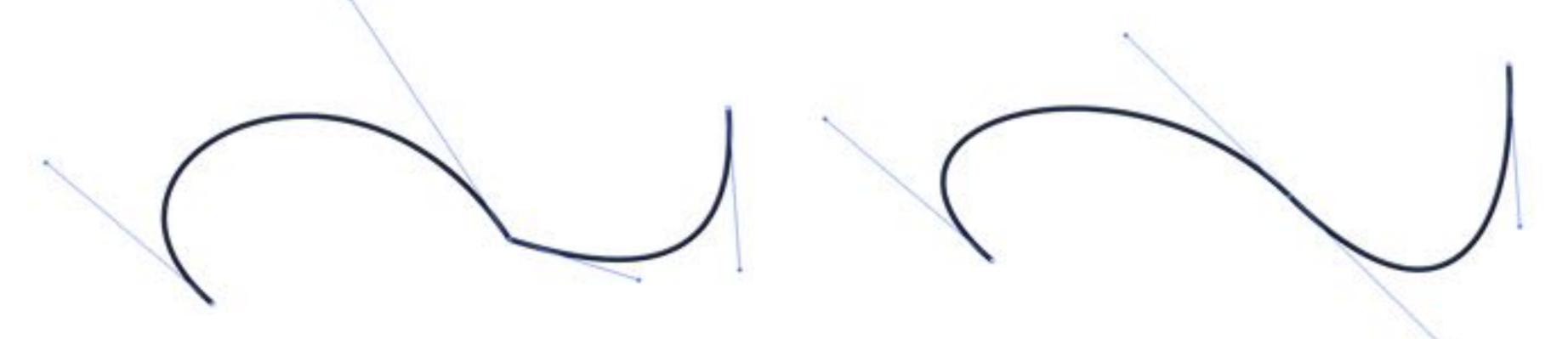
**■** Formally, piecewise Bézier curve:

B-spline 
$$\gamma(u) := \gamma_i \left( \frac{u - u_i}{u_{i+1} - u_i} \right), \qquad u_i \le u < u_{i+1}$$
 Bézier

Location of u<sub>i</sub> parameters are called "knots"

## **B-Splines** — tangent continuity

To get "seamless" curves, want tangents to line up:

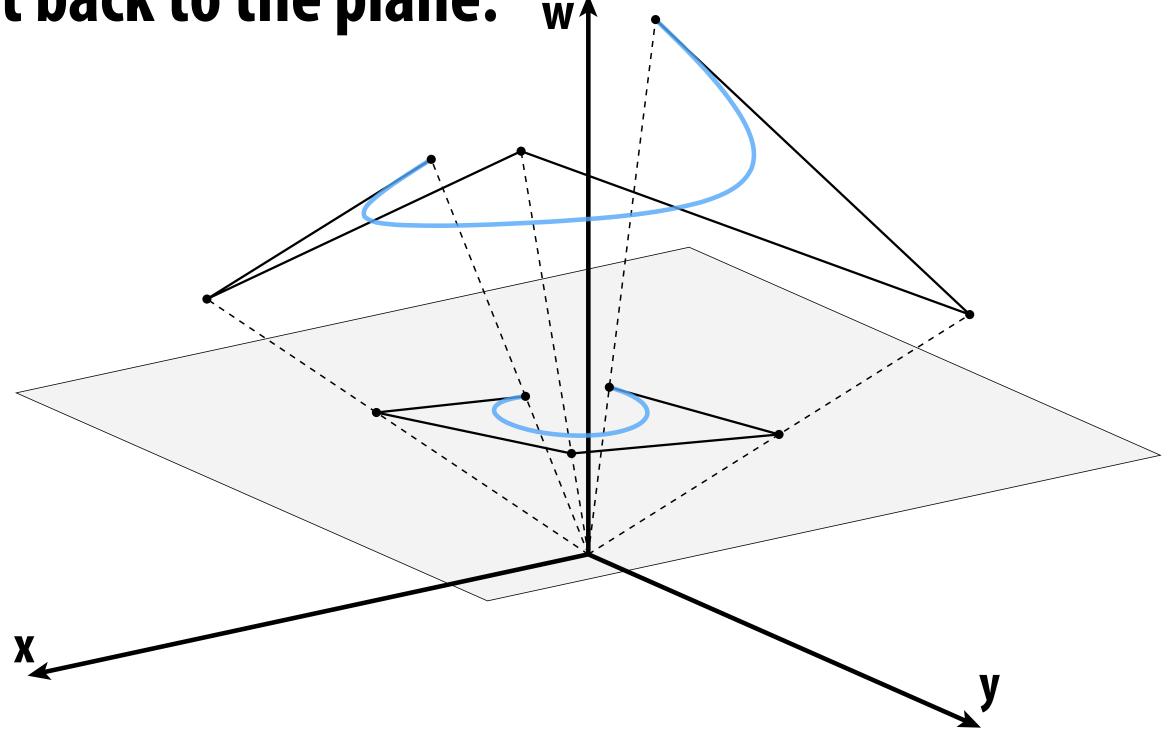


- Ok, but how?
- Each curve is cubic:  $u^3p_0 + 3u^2(1-u)p_1 + 3u(1-u)^2p_2 + (1-u)^3p_3$
- Q: How many degrees of freedom in a single cubic Bézier
- Tangents are difference between first two & last two points
- Q: How many degrees of freedom per B-spline segment?
- Q: Could you do this with quadratic Bézier? Linear Bézier?

## Rational B-Splines (Explicit)

■ B-Splines can't exactly represent conics—not even the circle!

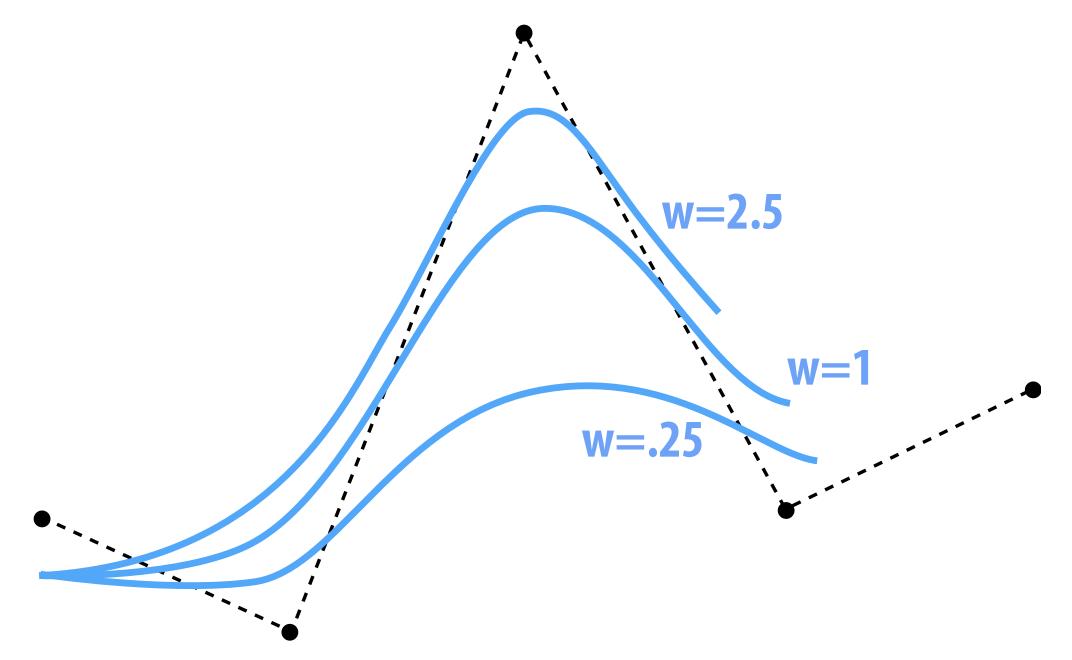
Solution: interpolate in homogeneous coordinates, then project back to the plane: w↑



Result is called a rational B-spline.

## NURBS (Explicit)

- (N)on-(U)niform (R)ational (B)-(S)pline
  - knots at arbitrary locations (non-uniform)
  - expressed in homogeneous coordinates (rational)
  - piecewise polynomial curve (B-Spline)
- Homogeneous coordinate w controls "strength" of a vertex:

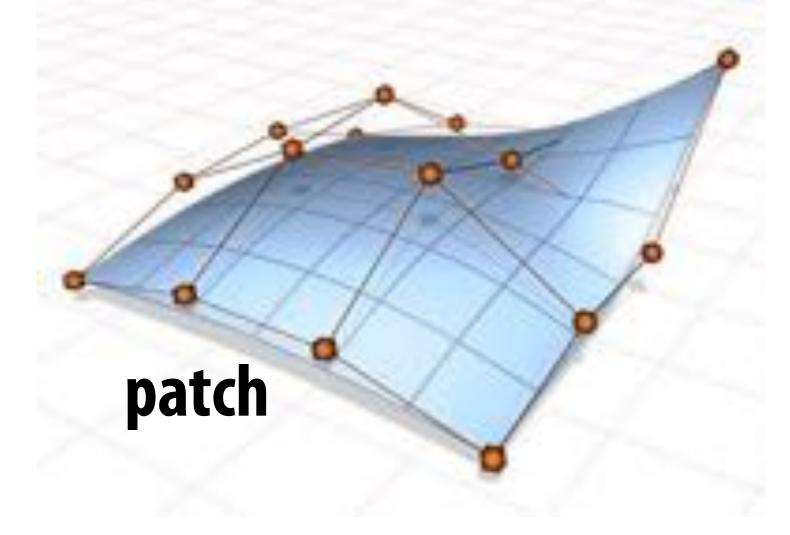


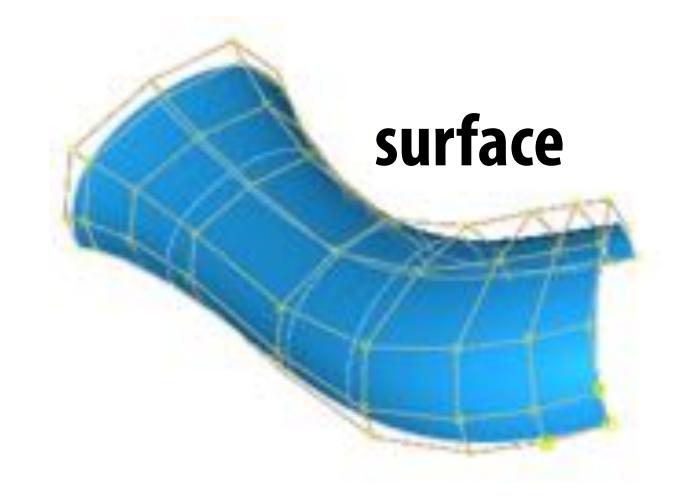
## NURBS Surface (Explicit)

- Much more common than using NURBS for curves
- Use tensor product of scalar NURBS curves to get a patch:

$$S(u,v) := N_i(u)N_j(v)p_{ij}$$

Multiple NURBS patches form a surface





- Pros: easy to evaluate, exact conics, high degree of continuity
- Cons: Hard to piece together patches, hard to edit (many DOFs)

#### What you should know:

- List some types of implicit surface representations
- What types of operations are easy with implicit surface representations?
- List some types of explicit surface representations
- What types of operations are easy with explicit surface representations?
- What is CSG (constructive solid geometry)? Give some examples of CSG operations.
- What type of representation is best for CSG operations?
- Describe how to do union, intersection, and subtraction of geometry using simple operators on a surface representation.
- What is a level set representation? When is it useful?
- What types of splines are common in computer graphics?
- Why are they popular? What properties make them most useful?
- Derive the equation on slide 56 from the definitions on slides 52 and 53. Draw a diagram to illustrate any terms you use.
- What was one motivation behind developing the rational b-spline?
- What is one advantage of using a \*non-uniform\* rational b-spline?

CMU 15-462/662, Spring 2016 60