Lecture 9:;

Introduction to Geometry

Computer Graphics
CMU 15-462/15-662, Spring 2016



Increasing the complexity of our models

Transformations Geometry Materials, lighting, ...
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What is geometry?
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Ceci n'est pas geometrie.
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What is geometry?

“Earth” “measure”

/1€ amoatre/ n.

1 The study of shapes, sizes, patterns, and positions.

2. The study of spaces where some quantity (lengths,
angles, etc.) can be measured.

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”
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How can we describe geometry?
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Given all these options, what'’s the best
way to encode geometry on a computer?
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Examples of geometry




Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry

CMU 15-462/662, Spring 2016 |4



Examples of geometry

(MU 15-462/662, Spring 2016



—
S
-
D
=
(-
D
()
-
(-
7,
-
.
&
(4=
><
L

(MU 15-462/662, Spring 2016




No one “best” choice—geometry is hard!

“| hate meshes.
| cannot believe how hard this is.
Geometry is hard.”

—David Baraff

Senior Research Scientist
Pixar Animation Studios

CMU 15-462/662, Spring 2016 | 7 Slide cribbed from Jeff Erickson.



Many ways to digitally encode geometry

m EXPLICIT
- point cloud

- polygon mesh

- subdivision, NURBS

- L-systems
m IMPLICIT

- level set

- algebraic surface

A,
m Each choice best suited to a different task/type of
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“Implicit” Representations of Geometry

m Points aren’t known directly, but satisfy some relationship
m E.g., unit sphere is all points x such that x2+y2+22=1

m More generally, f(x,y,z) =0
f(x,y)

+1
0
-1
19
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Many implicit representations in graphics

m algebraicsurfaces

m constructive solid
geometry

m level set methods
m blobby surfaces
m fractals

(Will see some of these a bit later.)
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But first, let’s play a game:
I’'m thinking of an implicit surface f(x,y,z)=0.

Find any point on it.



Give up?
My function was (x -1.23 (a plane):
y

Implicit surfaces make some tasks hard (like sampling).

CMU 15-462/662, Spring 2016 22



Let’s play another game.
| have a new surface f(x,y,z) =x2 + y2 + z2- 1

| want to see if a point is inside it.
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Check if this point is inside the unit sphere
How about the point(3/4,1/2,1/4)?

9/16 + 4/16 +1/16 -1=-1/8 1V

-1/8 <0
YES.

Implicit surfaces make other tasks easy (like inside/outside tests).
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“Explicit” Representations of Geometry

m All points are given directly
(cos(u) sin(v), sin(u) sin(v), cos(v)),

for0<u<2rand 0 <ov <

m E.g., points on sphere are

m Moregenerally: / : R® — R”; (u,v) = (7,9, 2)

U

<[

m (Might have a bunch of these maps, e.g., one per triangle.)
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Many explicit representations in graphics

triangle meshes

polygon meshes
subdivision surfaces
NURBS

point clouds
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But first, let’s play a game:
I'll give you an explicit surface.

You give me some points on it.
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Sampling an explicit surface
My surfaceisf(u,v)=(1.23,u,v).

Just plug in any values (u,v)! y

Explicit surfaces make some tasks easy (like sampling).

CMU 15-462/662, Spring 2016 28



Let’s play another game.
| have a new surface f(u,v).

| want to see if a point is inside it.
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Check if this point is inside the torus

My surface is f(u,v) = ( (2+cos(u))cos(v), (2+cos(u))sin(v), sin(u) )
How about the point (1,1/3,5/4)? 4 y

+.NO!

Explicit surfaces make other tasks hard (like inside/outside tests).
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CONCLUSION:
Some representations work better
than others—adepends on the task!
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Different representations will also be better
suited to different types of geometry.

Let’s take a look at some common
representations used in computer graphics.
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Algebraic Surfaces (Implicit)

m Surface is zero set of a polynomial inx, y, z (‘ algebralc variety”)
m Examples: e

9
iyt 24 =1 (R—\/x2+y2)2—|—z2:7°2 (:132 J z2—1)3:

m What about more complicated shapes? 228 4 U2

"y, ol " ol
.\c/' ";' . ".‘ ’a *w

m Very hard to'come up W|th polynomlals'
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Constructive Solid Geometry (Implicit)

m Build more complicated shapes via Boolean operations
m Basic operations:

UNION

DIFFERENCE

INTERSECTION
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Blobby Surfaces (Implicit)

m Instead of Booleans, gradually blend surfaces together:

m Easier to understandin 2D:

¢p( ) .= 6‘3j P ‘ (Gaussian centered at p)

f t— ¢ D -+ ¢ q (Sum of Gaussians centered at different points) o
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Blending Distance Functions (Implicit)

m Adistance function gives distance to closest point on object

m Can blend any two distance functions d, d,:

O Q(D

v

/2

/>

N

m Similar strategy to points, though many possibilities. E.g.,

f(z) = eh1(®)” 4 gd2()”

1
2

m Appearance depends on exactly how we combine functions

m Q: How do we implement a simple Boolean union?
m A:Just take the minimum: f(x) = min(di(z), dz2(x))

CMU 15-462/662, Spring 2016
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Scene of pure distance functions (not easy!)

See http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm
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http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

Level Set Methods (Implicit)

m Implicit surfaces have some nice features (e.g., merging/
splitting)

m But, hard to describe complex shapes in closed form
m Alternative: store a grid of values approximating function

-.35 -45 -35 -.30 -.25

30 | -25 | -20 | -10 | -10 f (X) = (

-.20 -.10 .10

-.15 .15

-.05 25 35

.15 .20 .25 .55 .60

m Surface is found where interpolated values equal zero
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Level Sets from Medical Data (CT, MRI, etc.)

m Level sets encode, e.g., constant tissue density
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Level Sets in Physical Simulation

m Level set encodes distance to air-liquid boundary

See http://physham.stanford.edu
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http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

Level Set Storage

m Drawback: storage for 2D surface is now 0(n3)
m (Can reduce cost by storing only a narrow band around

surface:
.’ . ..'
e ; l;t
': = - -
—1 % : s =
. " : 3
1 s, ‘: ' =
g t'." —-g. . ,
: o =¥ l |
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—
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Fractals (Implicit)

m No precise definition; exhibit self-similarity, detail at all
scales
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Mandelbrot Set - Definition

m For each point cin the plane:

- double the angle

- square the magnitude P
- add the original point ¢ +c

- repeat 9

If the point remains bounded (never goes to ), it’s in the set.
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Mandelbrot Set - Examples

starting point

B (1/3,1/2) (diverges)
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Mandelbrot Set - Zooming In

~()
10

(Colored according to how quickly each point diverges/converges.)
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Iterated Function Systems

Scott Draves (CMU Alumn) - see http://electricsheep.orq
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http://electricsheep.org

Implicit Representations - Pros & Cons

m Pros:
- description can be very compact (e.g., a polynomial)

- galgy to determine if a point is in our shape (just plug it
in!

- other queries may also be easy (e.g., distance to surface)
- for simple shapes, exact description/no sampling error
- easy to handle changes in topology (e.g., fluid)

m Cons:

- expensive to find all points in the shape (e.g., for
drawing)

- very difficult to model complex shapes
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What about explicit representations?
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Point Cloud (Explicit) N

m Easiest representation: list of points (x,y,z) \ .
Often augmented with normals
Easily represent any kind of geometry

I

N

m Useful for LARGE datasets (>>1 point/pixel)
m Difficult to draw in undersampled regions

N

Hard to do processing / simulation

(MU 15-462/662, Spring 2016 49



Polygon Mesh (Explicit)

m Store vertices and polygons (most often triangles or quads)
m Easier to do processing/simulation, adaptive sampling

m More complicated data structures

m Perhaps most common representation in graphics

(Much more about polygon meshes in upcoming lectures!)
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Triangle Mesh (Explicit) ;

m Store vertices as triples of coordinates
(x,y,2)

m Store triangles as triples of indices (i,',kg

ERTICES  TRIANGLE

m E.g., tetrahedron: x y - i j k
0: -1 -1 -1 0 2 1 0

l1: 1 -1 1 0 3 2

2: 1 1 -1 3 0 1

3: -1 1 1 3 1 2

m (an think of triangle as affine map from plane into space:

' f/_“",) /\
~ b

d

f(u,v) =a + u(b-a) + v(c-a)
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Bernstein Basis

m Why limit ourselves to just affine functions?
m More flexibility by using higher-order polynomials

m Instead of usual basis (1, x, X2, X3, ...), use Bernstein basis:
degree  0=<x<I L choose k”

A B}’L,fk(fl) '= (Z) ¥ (1 — )" "

k=0,...,n
B3 3

|—

B3 4

N
|

N | —= -
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Bezier Curves (Explicit)

m A Bezier curveis a curve expressed in the Bernstein basis:

v(s) ==Y Bu(s)pii

control points

P1

m Forn=1, just getaline segment!
m Forn=3, get“cubic Bezier”:
Po
m Important features: ()
1. interpolates endpoints
2. tangent to end segments

3. contained in convex hull (nice for
rasterization) ps

CMU 15-462/662, Spring 2016 53

P2



Higher-order Bezier Curves?

m What if we want a more interesting curve?
m High-degree Bernstein polynomials don’t interpolate well:

Very hard to control!
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B-Spline Curves (Explicit)
m Instead, use many low-order Bezier curve (B-spline)

m V\iid)ely-used technique in software (lllustrator, Inkscape,
etc.

C

m Formally, piecewise Bézier curve:

B-spl{:ne
u — Uy
)= (). w <
1+1 7 Ue
Bezier

m Location of u; parameters are called “knots”
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B-Splines — tangent continuity

m To get“seamless” curves, want tangents to line up:

0k, but how?
Each curve is cubic: udpo + 3u2(1-u)p1 + 3u(1-u)?p2 + (1-u)3ps

Q: How many degrees of freedom in a single cubic Bézier
Tangents are difference between first two & last two points

Q: How many degrees of freedom per B-spline segment?
m Q: Could you do this with quadratic Bezier? Linear Bezier?
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Rational B-Splines (Explicit)

m B-Splines can’t exactly represent conics—not even the circle!

m Solution: interpolate in homogeneous coordinates, then
project back to the plane:

Result is called a rational B-spline.
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NURBS (Explicit)

m (N)on-(U)niform (R)ational (B)-(S)pline
- knots at arbitrary locations (non-uniform)
- expressed in homogeneous coordinates (rational)
- piecewise polynomial curve (B-Spline)
m Homogeneous coordinate w controls “strength” of a vertex:

Q
7
’
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NURBS Surface (Explicit)

m Much more common than using NURBS for curves
m Use tensor product of scalar NURBS curves to get a patch:

S(u,v) := N;(u)N;(v)p;;
m Multiple NURBS patches form a surface

surface

m Pros: easy to evaluate, exact conics, high degree of continuity
m Cons: Hard to piece together patches, hard to edit (many DOFs)
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What you should know:

List some types of implicit surface representations

m  What types of operations are easy with implicit surface representations?

m List some types of explicit surface representations

m  What types of operations are easy with explicit surface representations?

m  Whatis (5G (constructive solid geometry)? Give some examples of (SG operations.
m  What type of representation is best for C5G operations?

m Describe how to do union, intersection, and subtraction of geometry using simple operators on a
surface representation.

m  Whatisalevel set representation? Whenis it useful?
m  What types of splines are common in computer graphics?
m  Whyare they popular? What properties make them most useful?

m Derive the equation on slide 56 from the definitions on slides 52 and 53. Draw a diagram to
illustrate any terms you use.

m  What was one motivation behind developing the rational b-spline?

m  Whatis one advantage of using a *non-uniform* rational b-spline?
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