Lecture 8:

The Rasterization Pipeline

(and its implementation on GPUs)

Computer Graphics
CMU 15-462/15-662, Spring 2016

What you know how to do (at this point in the course)

(w, h)

Y 5% e]
° o 0 (0’0)
Position objects and the Determine the position of Project objects onto
camera in the world objects relative to the camera the screen

Sample triangle coverage Compute triangle attribute Sample texture maps
values at covered sample points

(MU 15-462/662, Spring 2016 2

What else do you need to know to render a picture
like this?

Surface representation

How to represent complex
surfaces?

Occlusion

Determining which surface is
visible to the camera at each
sample point

Lighting/materials

Describing lights in scene and
how materials reflect light.

(MU 15-462/662, Spring 2016

Course roadmap

Introduction
Drawing a triangle (by sampling)

DraWing Thlngs Transforms and coordinate spaces

Key concepts: : . :

, o Perspective projection and texture sampling
Sampling (and anti-aliasing)
Coordinate Spaces and Transforms Today: putting it all together: end-to-end

rasterization pipeline

Geometry

Materials and Lighting

(MU 15-462/662, Spring 2016

Occlusion

CMU 15-418/618, Spring 2016

Occlusion: which triangle is visible at each

covered sample point?

50% transparent triangles

Opaque Triangles

CMU 15-418/618, Spring 2016

Review from last class

Assume we have a triangle defined by the screen-space 2D position and
distance (“depth”) from the camera of each vertex.

[pOa: pOy} g ; dO
Piz Py g , dy
P2 P2y YL ds

How do we compute the depth of the triangle at covered sample point (=, y)?

Interpolate it just like any other attribute that varies linearly over the surface
of the triangle.

CMU 15-418/618, Spring 2016

Occlusion using the depth-buffer (Z-buffer)

For each coverage sample point, depth-buffer stores depth of closest triangle
at this sample point that has been processed by the renderer so far.

Closest triangle at sample point (x,y) is triangle with minimum depth at (x,y)

O O O O O O O O O

Initial state of depth buffer =—p
before rendering any triangles
(all samples store farthest distance)

Grayscale value of sample point
used to indicate distance

Black = small distance O O O O O O O O O

White = large distance o o o o o o o 0o ©

CMU 15-418/618, Spring 2016

Depth buffer example

CMU 15-418/618, Spring 2016 9

Example: rendering three opaque triangles

CMU 15-418/618, Spring 2016 10

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:

depth=0.5

O O O

O O O

Color buffer contents

CMU 15-418/618, Spring 2016

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O O O O O

O O O O O O

Depth buffer contents

11

Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

O O O

O O O

Color buffer contents

CMU 15-418/618, Spring 2016

O

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O O O O O

O O O ® ® O

O O O O O O

O O O O O O

Depth buffer contents

12

Occlusion using the depth-buffer (Z-buffer)

Processing blue triangle:
depth =0.75

O O O O O O

O O O O O O

Color buffer contents

CMU 15-418/618, Spring 2016

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O O O O O

O

O O O O O O

Depth buffer contents

13

Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

O O
O O
O
O

O O O

Color buffer contents

CMU 15-418/618, Spring 2016

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O O O O O

O O ® ® O
O O ® ® O
O o o o o

o o o o o o
O O O O O

O O O O O O

Depth buffer contents

14

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:

depth =0.25

O ® ®

O O O

Color buffer contents

CMU 15-418/618, Spring 2016

O

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

Depth buffer contents

15

Occlusion using the depth-buffer (Z-buffer)

After processing red tria“QIE: Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O O O O O O O O O O O O O O O O
O O O O O O O O ® [[O
O O O O O O O O ® ® [O
O O O O O O O ® ® ® @ @
O O O O O ® ® ® ® @
O O O O ® @ @ @ @
O O [[[[[[
O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O
Color buffer contents Depth buffer contents

CMU 15-418/618, Spring 2016

16

Occlusion using the depth buffer

bool pass depth _test(dl, d2) {
return dl < d2;

}

depth_test(tri_d, tri_color, x, y) {
if (pass_depth_test(tri_d, zbuffer[x][y]) {

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.

tri d; // update zbuffer

zbuffer[x][y] =
= tri color; // update color buffer

color[x][vy]

CMU 15-418/618, Spring 2016

17

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

o * o % o * 4 ° o
® ¢ @ ¢ ® e ® ¢ ® ®

® ° ® ° ® ° e Lo °
Green trianglein ° o Y Y . ® o ©
front of yellow g -
triangle ® ° ° _ ® ° ® °
Yellow triangle in S . o o .
front of green ® o o ® o
triangle ° ® ® ° ®

CMU 15-418/618, Spring 2016

18

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

CMU 15-418/618, Spring 2016

19

Does depth buffer work with super sampling?

Of course! Occlusion test is per sample, not per pixel!

This example: green triangle occludes yellow triangle

(MU 15-418/618, Spring 2016

20

Color buffer contents

CMU 15-418/618, Spring 2016

21

Color buffer contents (4 samples per pixel)

CMU 15-418/618, Spring 2016

22

Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.

(MU 15-418/618, Spring 2016

23

Summary: occlusion using a depth buffer

Store one depth value per coverage sample (not per pixel!)

Constant space per sample
- Implication: constant space for depth buffer

Constant time occlusion test per covered sample

- Read-modify write of depth buffer if “pass” depth test
- Just a read if “fail”

Not specific to triangles: only requires that surface depth can be
evaluated at a screen sample point

But what about semi-transparent surfaces?

CMU 15-418/618, Spring 2016

24

CMU 15-418/618, Spring 2016

Compositing

25

Representing opacity as alpha

Alpha describes the opacity of an object
- Fully opaque surface: a =1

- 50% transparent surface: o = 0.5

- Fully transparent surface: o =0

Red triangle with decreasing opacity

A o

o=1 o=0.75 o

0.5 o =0.25

CMU 15-418/618, Spring 2016

26

Alpha: additional channel of image (rgba)

o of foreground object

CMU 15-418/618, Spring 2016

27

Over operator:

Composite image B with opacity ag over image A with opacity o,

A\ ‘ A over B != B overA
A “Over” is not commutative

BoverA A overB

Koala over NY(

CMU 15-418/618, Spring 2016

28

Over operator: non-premultiplied alpha

Composite image B with opacity g over image A with opacity o

A first attempt:

A — :AT Ag Ab} g A

B=[B, B, By B

B over A
Appearance of semi-
. transparent A
Composited color: l
C=apB+ (1 —ap)asA B A
Appearance of What B lets through A overB

semi-transparent B
AoverB = BoverA

“Over” is not commutative

CMU 15-418/618, Spring 2016

Over operator: premultiplied alpha

Composite image B with opacity g over image A with opacity o,

Non-premultiplied alpha:

A=[4, A, A)"

: T B A
B= B, B, By
C = apB (1 _ OéB)OéAA <+——— two multiplies, one add B over A

(referring to vector ops on colors)

Premultiplied alpha:

A’:[ozAAf,a asAy, aaAp ozA}T

B/: [OzBBr,a OéBBg OéBBb OzB}T

C'= B+ (1 — ag)A <——— onemultiply, one add

Composite alpha:
Notice premultiplied alpha composites alpha just like how it composites rgb.

¢ B (B) A Non-premultiplied alpha composites alpha differently than rgb.

CMU 15-418/618, Spring 2016

30

Applying “over” repeatedly
Composite image C with opacity ac over B with opacity ag over image A with opacity o,

Non-premultiplied alpha is not closed under composition:

A=[A, A, A" B A
B=[B. B, By
C=apB+ (1 —ap)asA C
ac =ap+ (1 —ap)aa
CoverBoverA

Consider result of compositing 50% red over 50% red:

C —= [(),75 0 ()}T Wait... this result is the premultiplied color!

_ “Over” for non-premultiplied alpha takes non-premultiplied colors to premultiplied
&C - Oo 75 Y7 /i ° °
colors (“over” operation is not closed)

Cannot compose “over” operations on non-premultiplied values: over(c, over(B, A))

Closed form of non-premultiplied alpha:

1
C=—(apB+ (1 —ap)asA)
ac

CMU 15-418/618, Spring 2016 31

Another problem with non-premultiplied alpha

Consider pre-filtering a texture with an alpha matte

Desired filtered result

TR

Ep ESESS

input color input filtered color filtered o filtered result

Downsampling non-premultiplied alpha composited over white
image results in 50% opaque brown)

0.25*((0,1,0,1)+(0,1,0,1) +
Result of filtering —
(0,0,0,0)+(0,0,0,0))=(0,0.5,0,0.5) premultiplied image

CMU 15-418/618, Spring 2016 32

Summary: advantages of premultiplied alpha

m Simple: compositing operation treats all channels (rgb and a)
the same

m More efficient than non-premultiplied representation: “over”
requires fewer math ops

m (losed under composition

m Better representation for filtering textures with alpha channel

CMU 15-418/618, Spring 2016 33

Color buffer update: semi-transparent surfaces

Color buffer values and tri_color are represented with premultiplied alpha

over(cl, c2) {
return c1 + (1-cl.a) * c2;

}

update_color_buffer(tri_d, tri_color, x, y) {

if (pass_depth_test(tri_d, zbuffer[x][y]) {
// update color buffer
// Note: no depth buffer update
color[x][y] = over(tri_color, color[x][Vy]);

What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

What if triangles are rendered in front to back order?
Modify code: over(color[x][y], tri_color)

CMU 15-418/618, Spring 2016

34

Putting it all together

Consider rendering a mixture of opaque and transparent triangles

Step 1: render opaque surfaces using depth-buffered occlusion
If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.
If pass depth test, triangle is composited OVER contents of color buffer at sample

CMU 15-418/618, Spring 2016 35

End-to-end rasterization pipeline
(“real-time graphics pipeline”)

CMU 15-418/618, Spring 2016

36

Command: draw these triangles!

Inputs:
list of _positions = { list of texcoords = {
vox, vOy, vOz, vOu, VvOv,
vlx, vly, vix, viu, vlv,
v2X, Vv22y, Vv2z, v2u, V2v,
v3x, v3y, V3X, v3u, V3v,
v4ax, vay, vaiz, v4u, viv,
v5bx, v5y, v5x }; v5u, vbv }; Texture map
Object-to-camera-space transform: 1
Perspective projection transform P

Size of output image (W, H)

Use depth test /update depth buffer: YES!

(MU 15-462/662, Spring 2016

Step 1:

Transform triangle vertices into camera space

(MU 15-462/662, Spring 2016

38

Step 2:

Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

X Pinhole
Camera .
(0,0) Znear ’ x, & X

Camera-space positions: 3D Normalized space positions

Note: I'm illustrating normalized 3D space after the
homogeneous divide, it is more accurate to think of
this volume in 3D-H space as defined by:

-w, -W, -w, w) and (w, w, w, w
CMU 15-462/662, Spring 2016 (reenr T) (A)

39

Step 3: clipping
B Discard triangles that lie complete outside the unit cube (culling)

- They are off screen, don’t bother processing them further

® (lip triangles that extend beyond the unit cube to the cube
- Note: clipping may create more triangles

Triangles before clipping Triangles after dipping
(MU 15-462/662, Spring 2016

40

Step 4: transform to screen coordinates

Transform vertex xy positions from normalized coordinates into
screen coordinates (based on screen w,h)

(w, h)

(0,0)

(MU 15-462/662, Spring 2016

1

Step 5: setup triangle (triangle preprocessing)

Compute triangle edge equations
Compute triangle attribute equations

Eo1(z,y) U(z,y)
Ei2(2,y) V(z,y)
Eoo(x,y
%(w, Y)

CMU 15-462/662, Spring 2016 42

Step 6: sample coverage

Evaluate attributes z, u, v at all covered samples

(MU 15-462/662, Spring 2016

43

Step 6: compute triangle color at sample point

e.g., sample texture map *

O
u(x,y), v(x,y)
O O o O O

*So far, we've only described computing triangle’s color at a point by interpolating per-vertex colors, or by sampling a
texture map. Laterin the course, we'll discuss more advanced algorithms for computing its color based on material
propextiesansiscanrdighting conditions.

44

Step 7: perform depth test (if enabled)

Also update depth value at covered samples (if necessary)

PASS

o o
PASS PASS

o o
FAIL PASS PASS

o o o o
FAIL PASS PASS PASS

® o o o
FAIL FAIL PASS PASS PASS

| o
FAIL FAIL PASS PASS PASS

(MU 15-462/662, Spring 2016

Step 8: update color buffer (if depth test passed)

OpenGL/Direct3D graphics pipeline *

Structures rendering computation as a series of operations on vertices, primitives,

fragments, and screen samples 03
°1 . .
l— °4 Input: vertices in 3D space
°2
Operations on JErtexibrocessing
vertices prrromTTomezeoneeees ;
Vertex stream : ° : o o) .
l ; © . : Verticesin positioned in normalized
Operations on o coordinate space
primitives o
(triangles, lines, etc,) Prmitive St’eaml Al
Fragment Generation Triangles positioned on screen

(Rasterization) § §
Operations on Fragment stream
fragments %:. Fragments (one fragment per covered sample)

Hragmentbrocessing
Shaded f tst
aded fragment s reaml E'% ?- Shaded fragments
Operations on Screen sample operations
(depth and color) oo :

screen samples 5

* Sevidfal 3144t {6dern OpenGL pipeline are omitted ' 47

OpenGL/Direct3D graphics pipeline *

°1

°4 |nput vertices in 3D space
| ©2
Operations on [apa Yiueasdly) €= transform matrices
vertices Vertex streaml
primitives o LR
(triangles, lines, etc.) Primitive St’eaml textures
Fragment Generation
(Rasterization)
Operations on Fragment stream Pipeline inputs:
fragments _
[FragmentiProcessing] Input vertex data
Shaded fragment stream ' — Parameters needed to compute position on vertices
in normalized coordinates (e.g., transform matrices)
Operations on Saran suiply ydebi — Parameters needed to compute color of fragments
(depth and color)
screen samples (e.g., textures)

— “Shader” programs that define behavior of vertex
and fragment stages

* sevetal 3¢3488% 4 tfidern OpenGL pipeline are omitted

48

Shader programs

Define behavior of vertex processing and fragment processing stages
Describe operation on a single vertex (or single fragment)

Example GLSL fragment shader program
Shader function executes once

uniform sampler2D myTex:V Program parameters per fragment.

uniform vec3 lightDir;
Per-fragment attributes

(interpolated by rasterizer) Qutputs color of surface at
sample point corresponding to

varying vec2 uv;
varying vec3 norm;

void diffuseShader() fragme“t°

(this shader performs a texture lookup to
obtain the surface’s material color at this point,
then performs a simple lighting computation)

{ Sample surface albedo
vec3 kd; / (reflectance color) from texture

kd = texture2d(myTexture, uv);
kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);
gl FragColor = vec4(kd, 1.90);
} /
Shader outputs surface color Modulate surface albedo by incident

. irradiance (incoming light)
CMU 15-462/662, Spring 2016 49

Goal: render very high complexity 3D scenes

— 100’s of thousands to millions of triangles in a scene

— Complex vertex and fragment shader computations

— High resolution screen outputs (2-4 Mpixel + supersampling)
30-60 fps

Unredl'EhdiitéKite'DRMAE (Epic Games 201 5) |

Graphics pipeline implementation: GPUs

Specialized processors for executing graphics pipeline computations

‘ l. | N A A AAAA : 'i :;!.:‘_9-' ..f (51 .
| '. 1’!!"3’:# L‘!j' (# i : System
o ‘ 7 - P R R U Yo
. Lontroties
Discrete GPU card { ﬁ EE
(NVIDIA GeForce Titan X) .- ‘ ittt it
Srared L3 Cache** .
I‘l:llln l.”.aw.“”. l"’.!‘ E

‘- Memory L rodle

Integrated GPU part of modern Intel CPU dle

(MU 15-462/662, Spring 2016 51

GPU: heterogeneous, multi-core processor

Modern GPUs offer ~2-4 TFLOPs of performance for
executing vertex and fragment shader programs

(akesKagpeomismparallel computing course (15-418) for more details!

T-OP’s of fixed-function

compute capability over here

———————————

Tessellate Tessellate
Tessellate Tessellate
Clip/Cull Clip/Culi
Rasterize Rasterize
Clip/Cull Clip/Culi
Rasterize Rasterize

Zbuffer / Zbuffer / Zbuffer /
Blend Blend Blend

Zbuffer / Zbuffer / Zbuffer /
Blend Blend Blend

Scheduler / Work Distributor

GPU
Memory

52

Summary

B Occlusion resolved independently at each screen sample using the depth buffer

m Alpha compositing for semi-transparent surfaces
- Premultiplied alpha forms simply repeated composition

- “Over” compositing operations is not commutative: requires triangles to be
processed in back-to-front (or front-to-back) order

® Graphics pipeline:

- Structures rendering computation as a sequence of operations performed
on vertices, primitives (e.g., triangles), fragments, and screen samples

- Behavior of parts of the pipeline is application-defined using shader
programs.

- Pipeline operations implemented by highly, optimized parallel processors
and fixed-function hardware (GPUs)

CMU 15-462/662, Spring 2016 53

