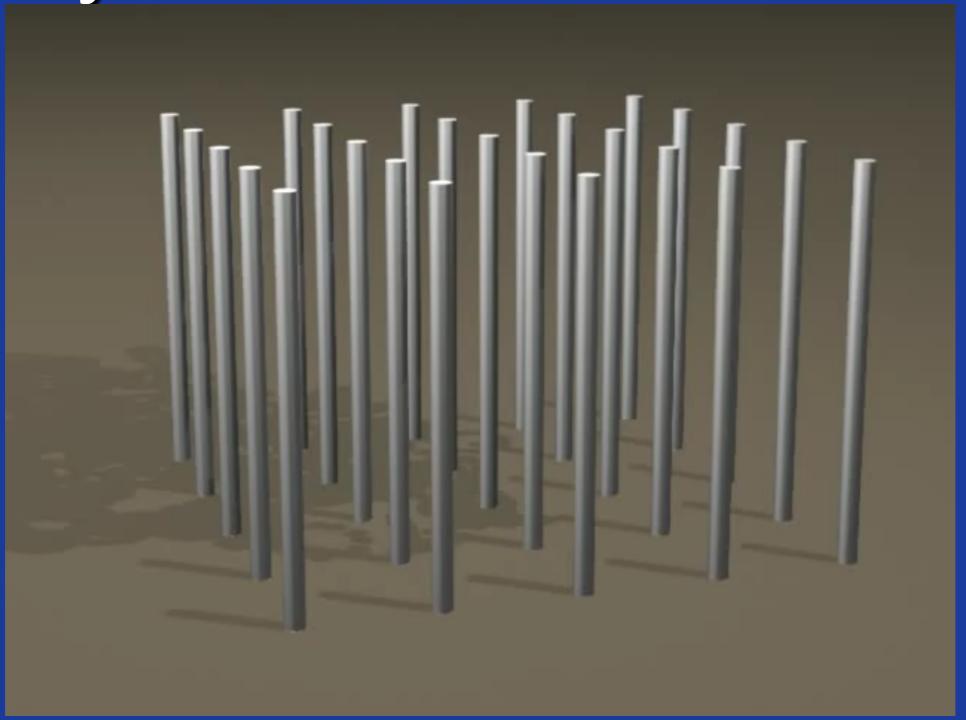
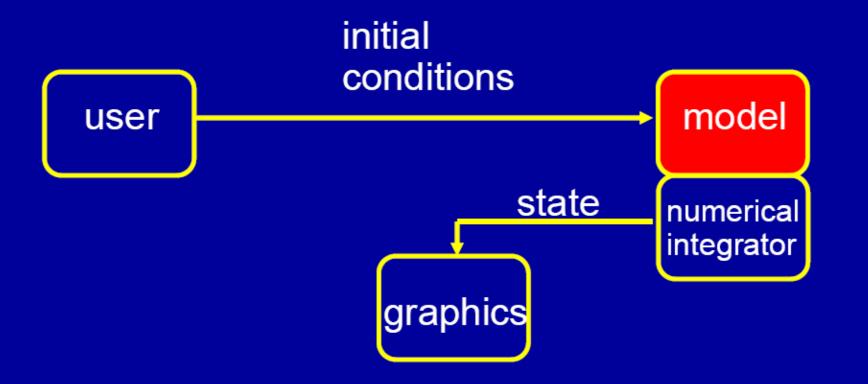
Differential Equations & Particle Systems

Physics-based Animation



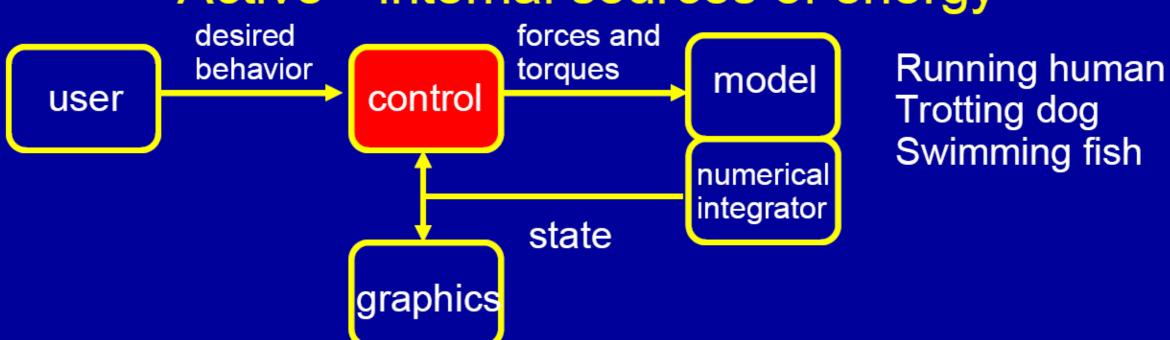
http://physbam.stanford.edu/~fedkiw/animations/large_pile.avi

Passive—no muscles or motors



Particle systems
Leaves
Water
Smoke
Clothing

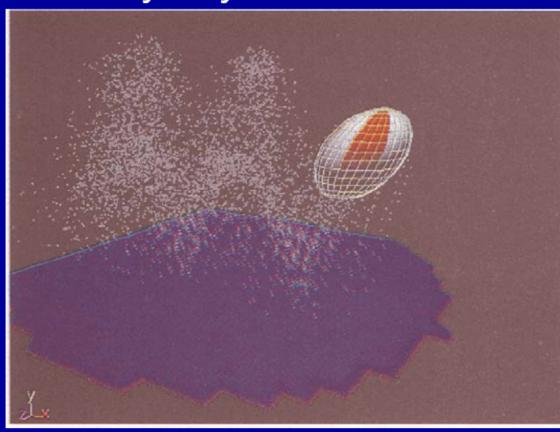
Active—internal sources of energy



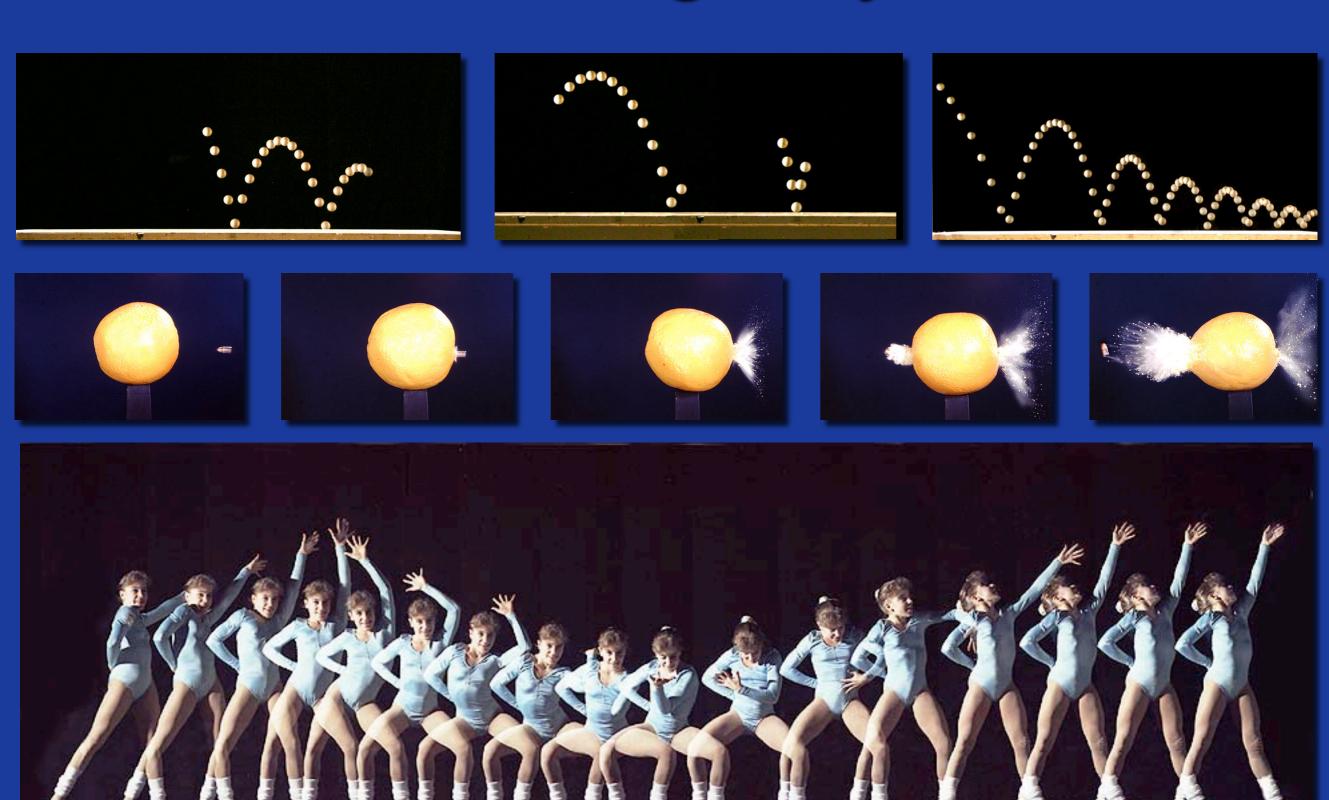
Dynamics

- Generate motion by specifying mass and force, apply physical laws (e.g., Newton's laws)
 - -particles
 - –soft objects
 - -rigid bodies
- Simulates physical phenomena
 - -gravity
 - -momentum (inertia)
 - -collisions
 - -friction
 - -fluid flow (drag, turbulence, ...)
 - -solidity, flexibility, elasticity
 - -fracture

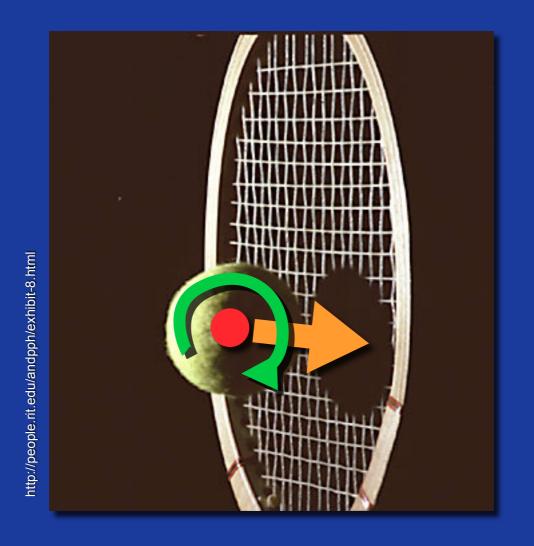
Maya Dynamics



Describing Physics



What variables do we need?



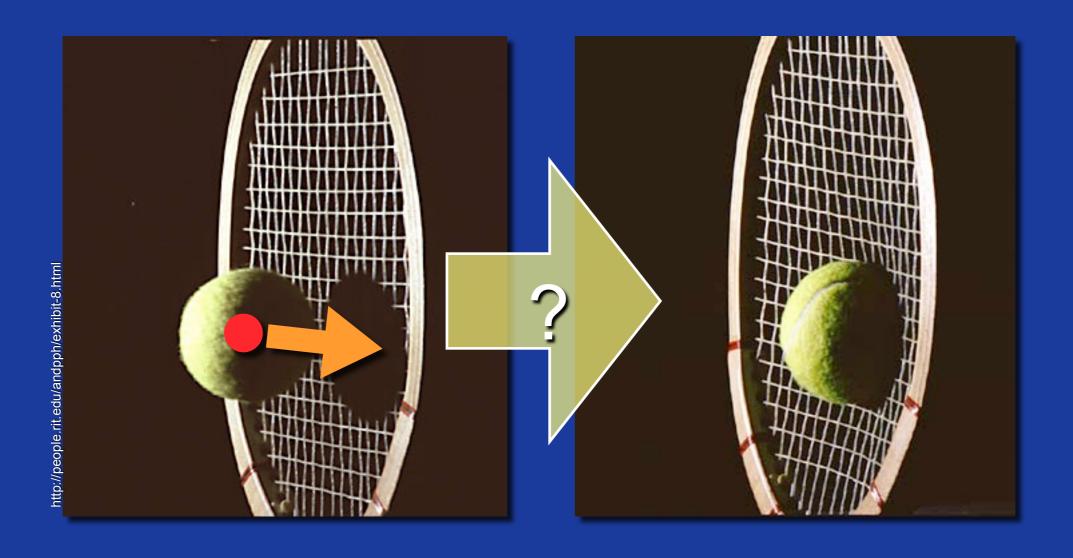
Static

- Radius
- Mass
- Racquet Info

Dynamic

- Position
- Velocity
- Rotation?

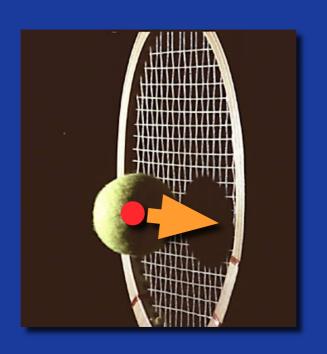
What Happens Next?

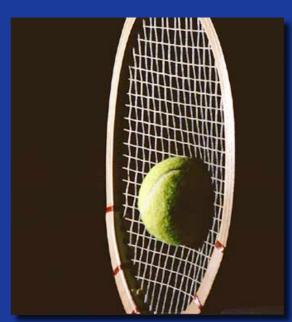


• Position $\begin{cases} \mathbf{x} = \begin{bmatrix} y \\ z \\ \dot{x} \\ \dot{y} \\ \dot{z} \end{cases}$

- Discrete Time: $\mathbf{x}_{t+1} = \mathbf{f}(\mathbf{x}_t)$
- Continuous Time: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

Differential Equations



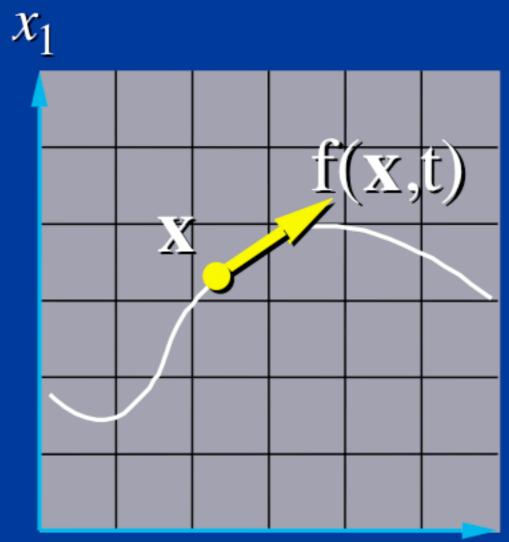


$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

Differential Equation Basics

Andrew Witkin

A Canonical Differential Equation

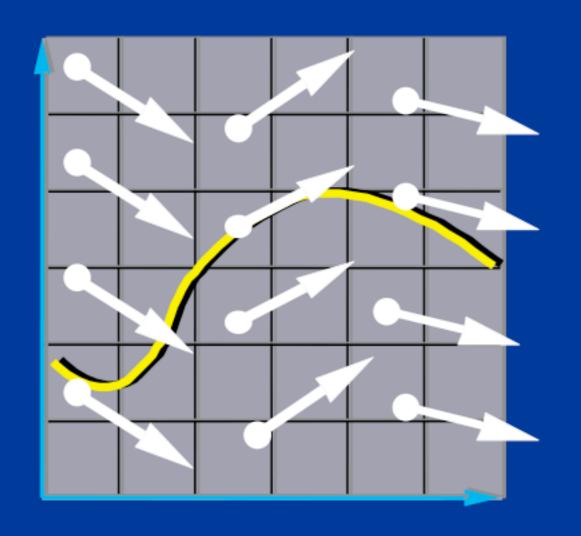


$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- x(t): a moving point.
- f(x,t): x's velocity.

 x_2

Vector Field

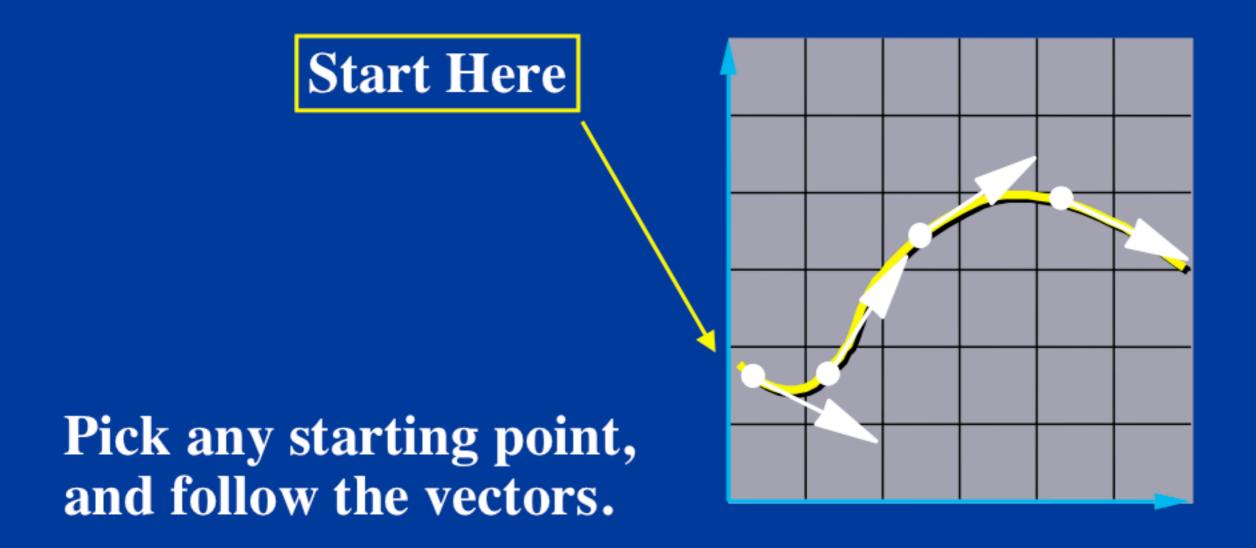


The differential equation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

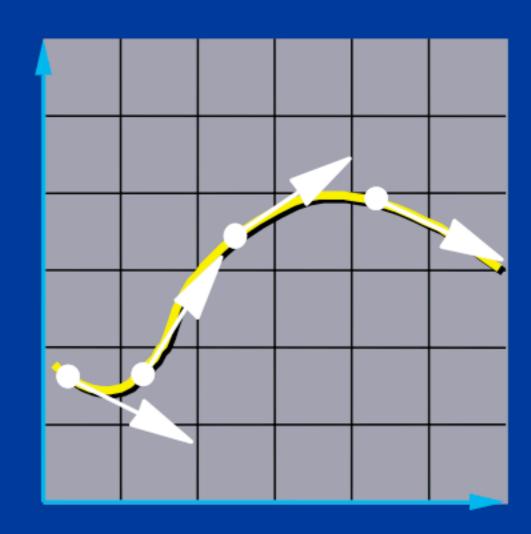
defines a vector field over x.

Integral Curves

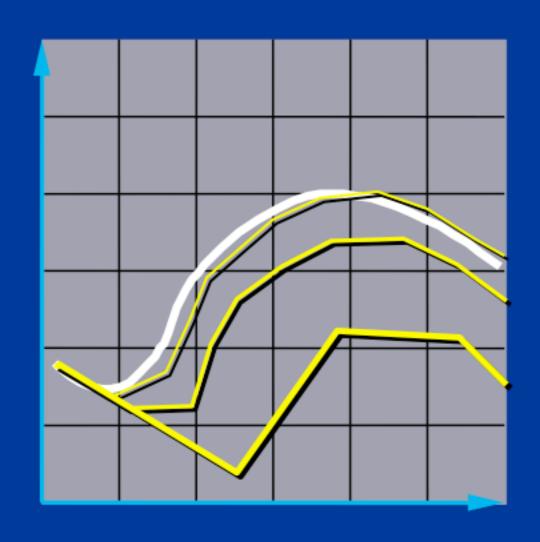


Initial Value Problems

Given the starting point, follow the integral curve.



Euler's Method



- Simplest numerical solution method
- Discrete time steps
- Bigger steps, bigger errors.

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}(\mathbf{x}, t)$$

Two Problems

- Accuracy
- Instability

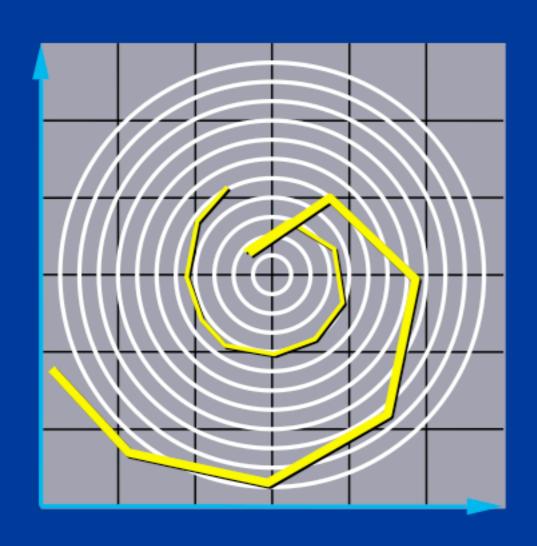
Accuracy

Consider the equation:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{x}$$

What do the integral curves look like?

Problem I: Inaccuracy



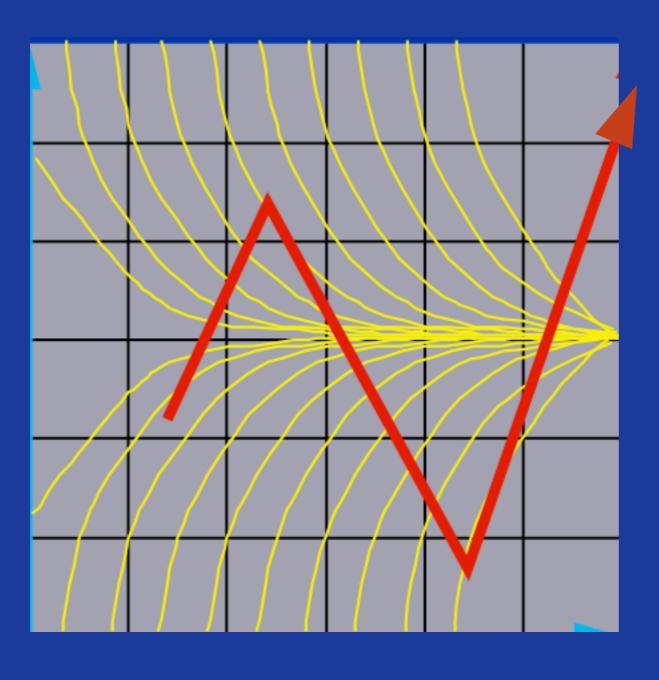
Error turns x(t) from a circle into the spiral of your choice.

Problem 2: Instability

Consider the following system:

$$\begin{cases} \dot{x} = -x \\ x(0) = 1 \end{cases}$$

Problem 2: Instability



to Neptune!

Accuracy of Euler Method

$$\dot{x} = f(x)$$

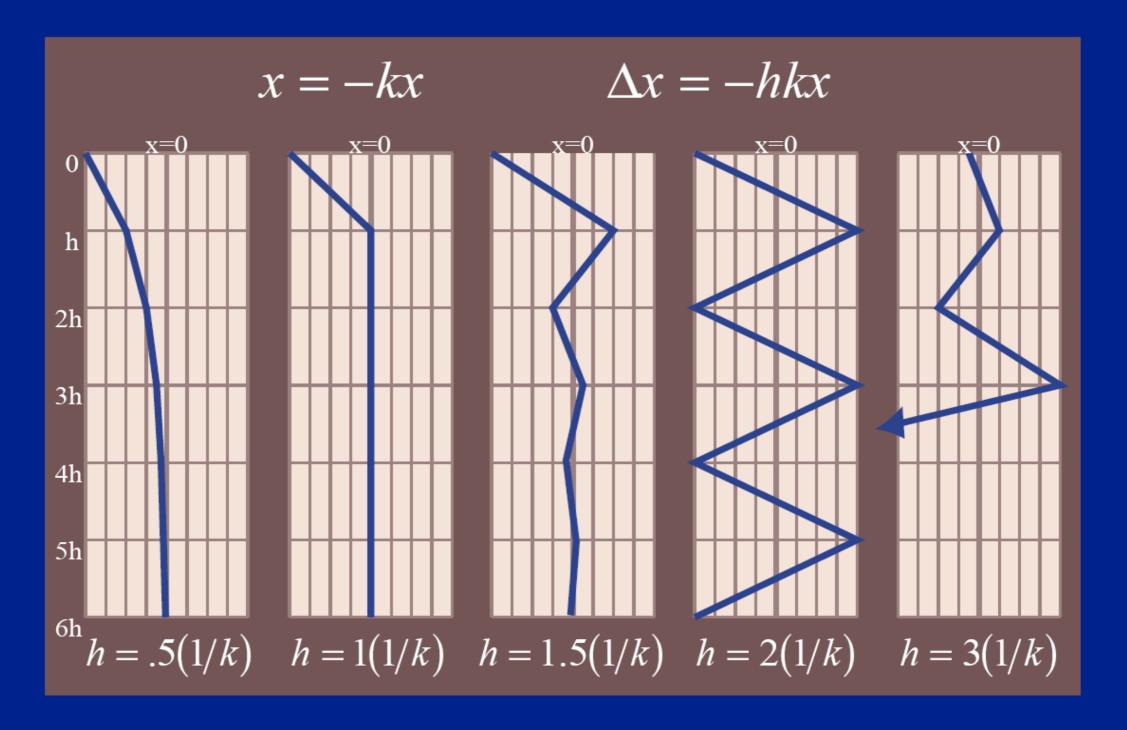
Consider Taylor Expansion about x(t)...

$$x(t+h) = \underbrace{x(t) + hf(x(t))}_{\text{constant}} + \underbrace{hf(x(t))}_{\text{linear}} + \underbrace{O(h^2)}_{\text{everything}}$$

Euler's method has error O(h2)... first order.

How can we get to O(h³) error?

Euler's method has a speed limit



h > 1/k: oscillate.

h > 2/k: explode!

The Midpoint Method

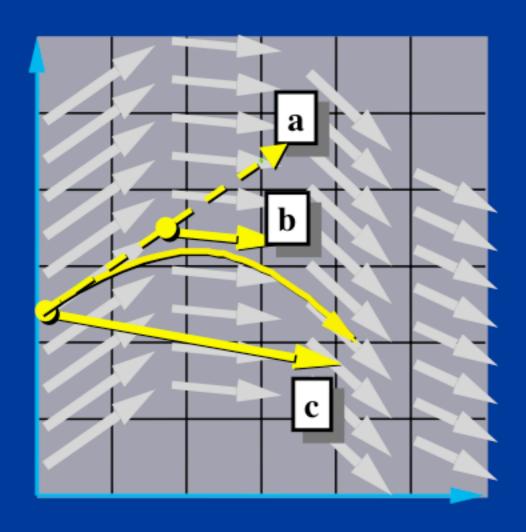
• Also known as second order Runge-Kutta:

$$k_1 = h(f(x_0, t_0))$$

$$k_2 = hf(x_0 + \frac{k_1}{2}, t_0 + \frac{h}{2})$$

$$x(t_0 + h) = x_0 + k_2 + O(h^3)$$

The Midpoint Method



a. Compute an Euler step

$$\Delta \mathbf{x} = \Delta t \, \mathbf{f}(\mathbf{x}, t)$$

b. Evaluate f at the midpoint

$$\mathbf{f}_{\text{mid}} = \mathbf{f} \left(\frac{\mathbf{x} + \Delta \mathbf{x}}{2}, \frac{t + \Delta t}{2} \right)$$

c. Take a step using the midpoint value

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \,\mathbf{f}_{\text{mid}}$$

4th-Order Runge-Kutta

$$k_1 = hf(x_0, t_0)$$

$$k_2 = hf(x_0 + \frac{k_1}{2}, t_0 + \frac{h}{2})$$

$$k_3 = hf(x_0 + \frac{k_2}{2}, t_0 + \frac{h}{2})$$

$$k_4 = hf(x_0 + k_3, t_0 + h)$$

$$x(t_0 + h) = x_0 + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4 + O(h^5)$$

Very popular

q-Stage Runge-Kutta

General Form:

$$x(t_0 + h) = x_0 + h \sum_{i=1}^{q} w_i k_i$$

where:

$$k_i = f\left(x_0 + h\sum_{j=1}^{i-1} \beta_{ij} k_j\right)$$

Find the constant that ensure accuracty O(hⁿ).

stability is all stability is all stability is all

- If your step size is too big, your simulation blows up. It isn't pretty.
- Sometimes you have to make the step size so small that you never get anyplace.
- Nasty cases: cloth, constrained systems.

Implicit Euler Method

$$x(t_0 + h) = x(t_0) + h \dot{x}(t_0)$$

$$x(t_0 + h) = x(t_0) + h \dot{x}(t_0 + \Delta t)$$

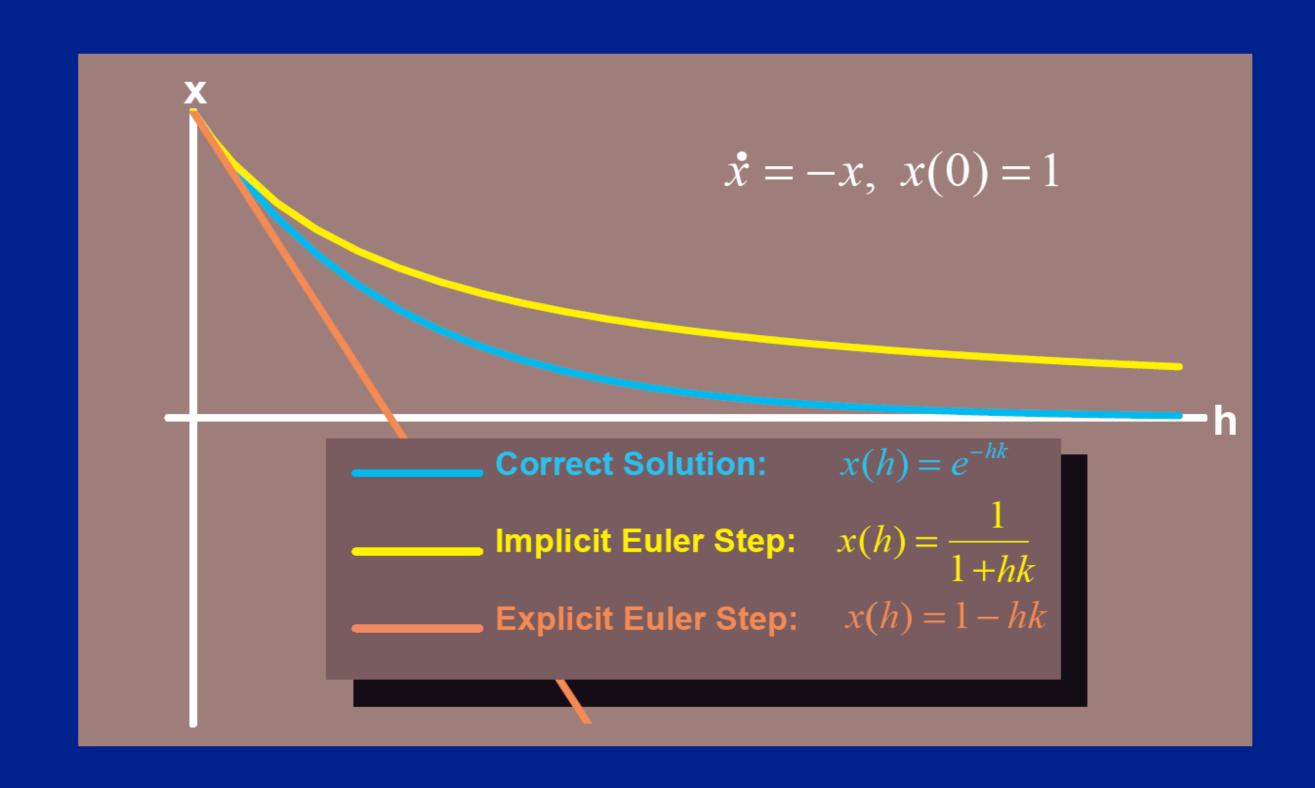
Implicit Euler for $\dot{x} = -kx$

$$x(t+h) = x(t) + h\dot{x}(t+h)$$

$$= x(t) - hkx(t+h)$$

$$= \frac{x(t)}{1+hk}$$

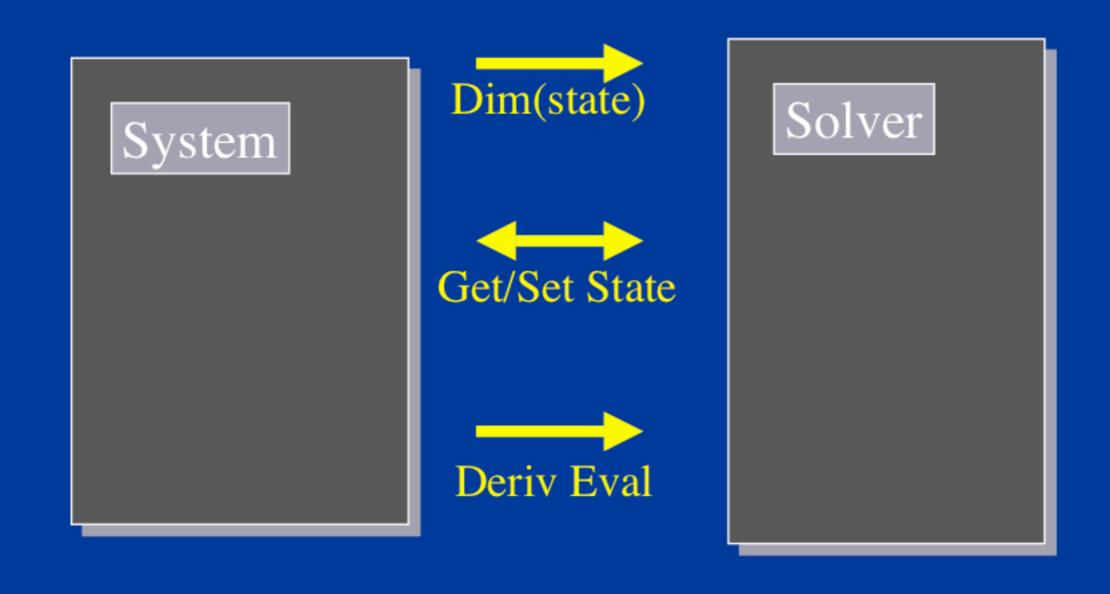
One Step: Implicit vs. Explicit



Modular Implementation

- Generic operations:
 - Get dim(x)
 - Get/set x and t
 - Deriv Eval at current (x,t)
- Write solvers in terms of these.
 - Re-usable solver code.
 - Simplifies model implementation.

Solver Interface



A Code Fragment

```
void eulerStep(Sys sys, float h) {
   float t = getTime(sys);
   vector<float> x0, deltaX;

  t = getTime(sys);
   x0 = getState(sys);
   deltaX = derivEval(sys,x0, t);
   setState(sys, x0 + h*deltaX, t+h);
}
```

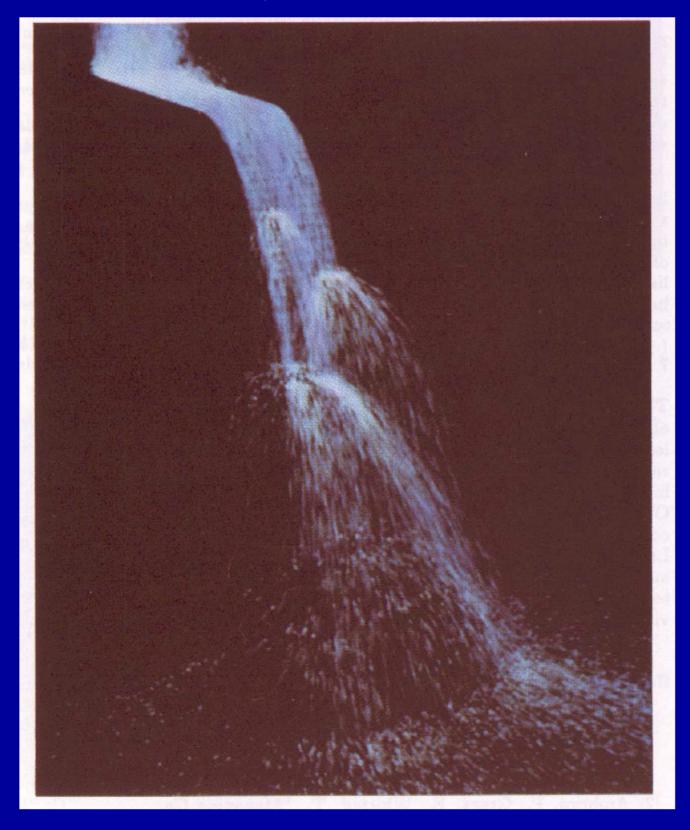
Particle Systems

Particle Systems

Clouds Smoke Fire Waterfalls Fireworks

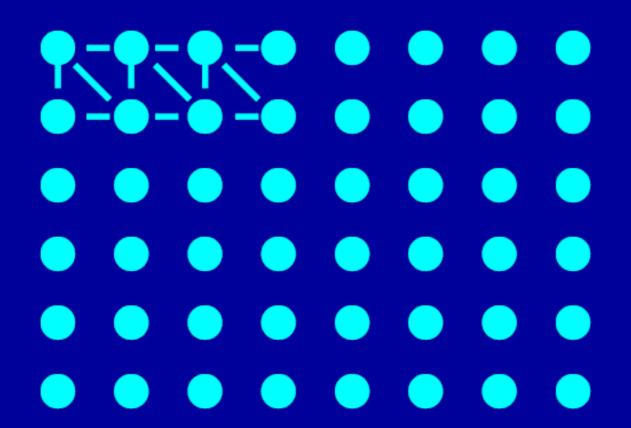
Reeves '83, the Wrath of Khan Batman Returns, using Reynold's flocking algorithms

Karl Sims, Particle Dreams

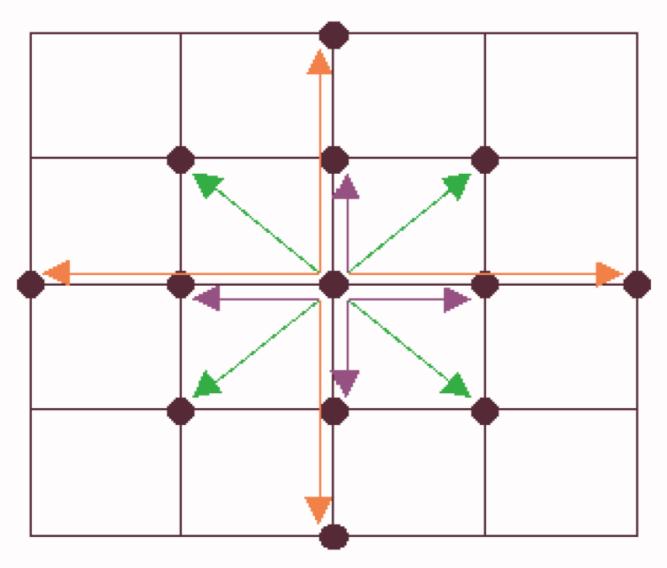


Spring-Mass Systems

Cloth in 2D Jello in 3D



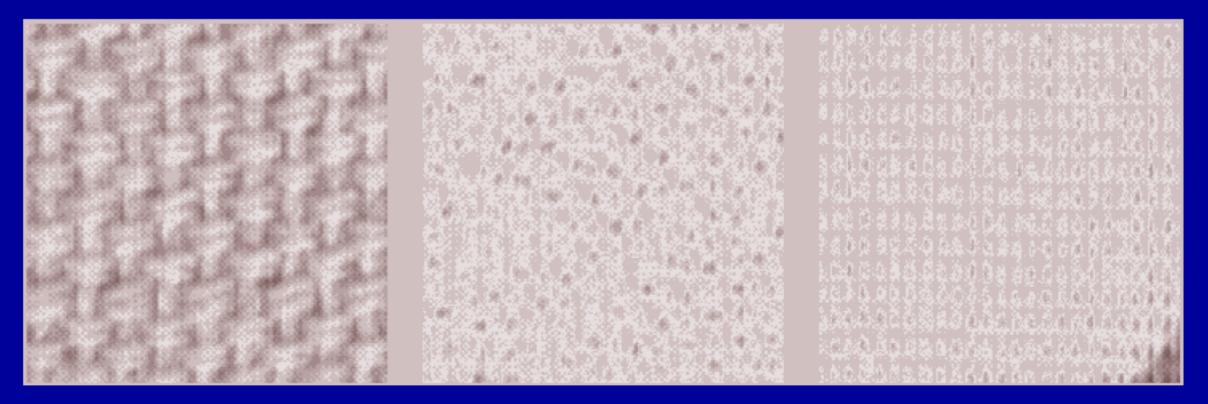
Cloth Simulation



Cloth forces:

Blue (short horizontal & vertical) = stretch springs Green (diagonal) = shear springs Red (long horizontal & vertical) = bend springs

Cloth



Many types of cloth Very different properties Not a simple elastic surface Woven fabrics tend to be very stiff Anisotropic

Breen '95

Artificial Fish

