Texture and other Mappings

- Texture Mapping
- Bump Mapping
- Displacement Mapping
- Environment Mapping
Environment Mapping

Specular reflections that mirror the environment
Environment Mapping

Specular reflections that mirror the environment

Cube is a natural intermediate object for a room
Environment Mapping: Cube Maps
Paul Debevec: Image-Based Lighting

http://www.paulDebevec.com/IBL2003/
We *could* specify all texture coordinates by hand...

For each triangle in the model establish a corresponding region in the phototexture.
Tools help us unroll an object to “paint” it

- www.uvmapper.com
Uses for Texture Mapping

Use texture to affect a variety of parameters

- surface color - radiance of each point on surface (Catmull 1974)
- surface reflectance - reflectance coefficients k_d, k_s, or n_{shiny}
- normal vector - bump mapping (Blinn 1978)
- geometry - displacement mapping
- transparency - transparency mapping (clouds) (Gardener 1985)
- light source radiance - environment mapping (Blinn 1978)
Radiance vs. Reflectance Mapping

Texture specifies (isotropic) radiance for each point on surface

Texture specifies diffuse color (k_d coefficients) for each point on surface
- three coefficients, one each for R, G, and B radiance channels
Bump Mapping

- Basic texture mapping paints on to a smooth surface
- How do you make a surface look *rough*?
 - Option 1: model the surface with many small polygons
 - Option 2: perturb the normal vectors before the shading calculation

![Real Bump](image1)

![Fake Bump](image2)

![Flat Plane](image3)

Sphere w/Diffuse Texture Map + Bump Map = Sphere w/Diffuse Texture + Bump Map
Bump Mapping

- We can perturb the normal vector without having to make any actual change to the shape.
- This illusion can be seen through—how?

Original model (5M) Simplified (500) Simple model with bump map
Another Bump Mapping Example

Cylinder w/Diffuse Texture Map

Bump Map
Displacement Mapping

- Use texture map to displace each point on the surface
 - Texture value gives amount to move in direction normal to surface

- How is this different from bump mapping?
Basics of Texture Mapping in OpenGL

Glubyte my_texels[512][512][3];
Gluint texID;

glGenTextures(1, &texID);
glBindTexture(GL_TEXTURE_2D, texID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 512, 512, 0,
 GL_RGB, GL_UNSIGNED_BYTE, my_texels);
/* level, components, w, h, border, format, type, tarray */

/* assign texture coordinates */
 glEnable(GL_TEXTURE_2D);
 glBegin(GL_QUAD);
 glTexCoord2f(0.0, 0.0);
 glVertex3f(x1,y1,z1);
 glTexCoord2f(1.0, 0.0);
 glVertex3f(x2,y2,z2);
 glTexCoord2f(1.0,1.0);
 glVertex3f(x3,y3,z3);
 glTexCoord2f(0.0,1.0);
 glVertex3f(x4,y4,z4);
 glEnd();
 glDisable(GL_TEXTURE_2D);
Grungy details we’ve ignored

- Specify s or t out of range? Use \texttt{GL_TEXTURE_WRAP} in \texttt{glTexParameter} because many textures are carefully designed to repeat.

- Aliasing? Mapping doesn’t send you to the center of a texel. Can average nearest 2x2 texels using \texttt{GL_LINEAR}.

- Mipmapping: use textures of varying resolutions. 64x64 becomes 32x32, 16x16, 8x8, 4x4, 2x2 and 1x1 arrays with \texttt{gluBuild2Dmipmaps}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.6.png}
\caption{Image texture repeat, mirror, clamp, and border functions in action.}
\end{figure}
Texture Generation

Photographs
Drawings
Procedural methods (2D or 3D)
(2D: stripe, wave, and noise patterns
3D: sculpting in marble and granite)
Procedural Methods

Reaction-Diffusion
Greg Turk, Siggraph ’91
Solid Textures

• Have a 3-D array of texture values (e.g., a block of marble)

• In practice the map is often defined procedurally
 – No need to store an entire 3D array of colors
 – Just define a function to generate a color for each 3D point

• The most interesting solid textures are random ones

• Evaluate the texture coordinates in object coordinates - otherwise moving the object changes its texture!

• Ken Perlin's talk "Making Noise"

From: An Image Synthesizer by Ken Perlin, SIGGRAPH '85
Data Driven Approaches

• Made popular by Efros and Leung, 1999

http://graphics.cs.cmu.edu/people/efros/research/EfrosLeung.html
Practice Problems

How might you create an environment map to capture lighting effects from a real-world outdoor scene? (Think of Paul Debevec’s “Rendering with Natural Light” scene shown in class.) Assume only tools that you may have in your home (e.g., a camera).
Practice Problems

When would you choose a displacement map over a bump map? Which is likely to be more difficult to implement and why? (Think carefully about the flow of operations in the standard computer graphics pipeline.)

Why do you not get a realistic appearance when using an environment map to render the appearance of a large flat mirror? What visual artifacts would you expect to see if you tried to do this?