Subdivision
Surface Subdivision

- Start with Polygon Mesh
- Refine mesh by creating new faces and vertices
- Repeat
Project Overview

Surface Subdivision

- Start with Polygon Mesh
- Refine mesh by creating new faces and vertices
- Repeat
Subdivision

• Many different algorithms
 o Approximating v. Interpolating
 o Face Splitting v. Vertex Splitting
 o Continuity properties of final surface
Subdivision

- Face split vs. Vertex split

Figure 4.1: Different refinement rules.
Loop Subdivision

- Approximating
- Face Splitting
- C2 continuity on regular meshes
Loop Subdivision

- Approximating
- Face Splitting
- C2 continuity on regular meshes
Loop Subdivision

- Approximating
- Face Splitting
- C2 continuity on regular meshes
Loop Subdivision

- Newly created vertices are called **odd vertices**

![Odd Vertices](image)
Loop Subdivision

- Newly created vertices are called **odd vertices**
- Original vertices are called **even vertices**
• But "Approximating" means we recompute positions of all vertices (**even** and **odd**)
Loop Subdivision

• But "Approximating" means we recompute positions of all vertices (even and odd)

http://ezekiel.vancouver.wsu.edu/~cs442/lectures/winged-edge/subdivision/subdivision.html
http://www.cs.dartmouth.edu/~fabio/teaching/graphics08/lectures/10_SubdivisionSurfaces_Web.pdf
Loop Subdivision

• Computing odd vertices

Interior:
\[v = \frac{3.0}{8.0} (a + b) + \frac{1.0}{8.0} (c + d) \]

Boundary:
\[v = \frac{1.0}{2.0} (a + b) \]

Notice that to compute \(v \) we need some to know the nearby vertices.
Loop Subdivision

• Computing **even** vertices

Interior:
\[v = v \cdot (1 - k \cdot \beta) + \text{(sum of all } k \text{ neighboring vertices)} \cdot \beta \]

Boundary:
\[v = \frac{1.0}{8.0} \cdot (a + b) + \frac{3.0}{4.0} \cdot v \]

Notice that to compute \(v \) we need to know all neighboring vertices.
Loop Subdivision - Picking Beta

Figure 4.3: Loop subdivision: in the picture above, β can be chosen to be either $\frac{1}{n}(5/8 - (\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{n})^2)$ (original choice of Loop [16]), or, for $n > 3$, $\beta = \frac{3}{8n}$ as proposed by Warren [33]. For $n = 3$, $\beta = 3/16$ can be used.
Loop Subdivision

• Computing odd vertices
• Computing even vertices

Important:
1. We need to be able to query adjacency information about the mesh.
2. We need to be able to tell if a vertex is a boundary or interior vertex.
Loop Subdivision

Algorithm (one iteration)

1. Build adjacency data structure
 Tricky

2. Compute odd vertices
 Straightforward once you finish step 1.

3. Compute even vertices
 Straightforward once you finish step 1.

4. Rebuild mesh / Connect vertices to create new faces
 Similar to Project 1 (when you created a mesh from a heightmap)
Adjacent Data Structure

What properties do you want?

• Efficient traversal and lookup
 - `get_adjacent_faces(&mesh, &edge)`
 - `get_neighbor_vertices(&mesh, &vertex)`

• Efficient memory usage

• Efficient creation and update
Adjacency Data Structure

What data do you need in the structure?

Mesh Data
• Some combination of Vertices, Faces, Edges
• Adjacency information

Loop Subdivision Metadata
• implicit
 o all edges of index < i have been subdivided
• explicit
 o if (!mesh.edge[i].is_subdivided) ...
Adjacency Data Structure

Useful Mesh Attributes

• Every triangle has 3 vertices
• Every triangle is adjacent to up to 3 other triangles
Adjacency Data Structure

Useful Mesh Attributes

• Every triangle has 3 vertices
• Every triangle is adjacent to up to 3 other triangles
• A given vertex has N neighbor vertices
• The same vertex is part of either N-1 or N triangles
 o Why?
 o There is a useful implication of this for Loop Subdivision
Adjacency Data Structure

Useful Adjacency Attributes

• Triangle -> Vertex
• Triangle -> Triangle
• Vertex -> Vertex
• Vertex -> Triangle

This is a simple representation that can handle the queries you need.
Adjacency Data Structure

Implementation

• How you implement (storing and building) the adjacency data structure can be more important than what you represent.

• Stick to C data structures (arrays and structs) for the best speed

• Be mindful that `malloc/new` and `free/delete` are slow
Other Subdivision Algorithms

• Modified Butterfly: interpolating algorithm

Figure 4.5: Modified Butterfly subdivision. The coefficients s_i are $\frac{1}{k} \left(\frac{1}{4} + \cos \frac{2\pi}{k} + \frac{1}{2} \cos \frac{4\pi}{k} \right)$ for $k > 5$. For $k = 3$, $s_0 = \frac{5}{12}$, $s_{1,2} = -\frac{1}{12}$; for $k = 4$, $s_0 = \frac{3}{8}$, $s_2 = -\frac{1}{8}$, $s_{1,3} = 0$.
Other Subdivision Algorithms

- Modified Butterfly: interpolating algorithm

Figure 4.5: Modified Butterfly subdivision. The coefficients s_i are $\frac{1}{k} \left(\frac{1}{4} + \cos \frac{2\pi}{k} + \frac{1}{2} \cos \frac{4\pi}{k} \right)$ for $k > 5$.
For $k = 3$, $s_0 = \frac{5}{12}$, $s_{1,2} = -\frac{1}{12}$; for $k = 4$, $s_0 = \frac{3}{8}$, $s_2 = -\frac{1}{8}$, $s_{1,3} = 0$.
Other Subdivision Algorithms

- **Catmull-Clark**: approximating

![Diagram showing masks for face, edge, and boundary vertices]

Figure 4.8: Catmull-Clark subdivision. Catmull and Clark [4] suggest the following coefficients for rules at extraordinary vertices: $\beta = \frac{3}{8}$ and $\gamma = \frac{1}{8}$.
Other Subdivision Algorithms

- Kobbelt: approximating

Figure 4.11: Kobbelt subdivision.
Figure 4.20: Different subdivision schemes produce similar results for smooth meshes.