Visualization and Nonphotorealistic Rendering

Adrien Treuille
Carnegie Mellon Universtiy

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing

Visualization

http://medvis.vrvis.at/fileadmin/hvr/images/headlarge.jpg

- Goal: Use computer graphics to understand data.
- For virtual every data type there is a corresponding visualization.
 - The importance of graphics!

Numerical Data

http://www.manifold.net/news/fly_through.jpg

Graphs

Graphs

http://www.designinginteractions.com/chapters/7

Geographic Data

 $http://flowing data.com/wp-content/plugins/yet-another-photoblog/cache/g_econ.6zhzwniskpgcwwgs00okoco4s.7dm680981og04ocskgcsckco4.th.jpeg$

http://www.faculty.iu-bremen.de/llinsen/publications/ParkYuHotzKreylosLinsenHamann06.jpg

3D Volume Data

http://medvis.vrvis.at/fileadmin/hvr/images/headlarge.jpg

Figure 2.4: An example of a visualization of a single respiratory phase of a 4DCT visualization showing lung, bone, and skin.

Volume Rendering

- Visualize Large dataset for scientific / medical application.
- Generally do not start with a 3D model.

INPUT

CT Scan - White means higher radiodensity.

OUTPUT

Large Datasets

CT Scan - White means higher radiodensity.

OUTPUT

• CT or MRI: • e.g. $512 \times 512 \times 200 \approx 50 \text{MB}$

- Visible Human: • $512 \times 512 \times 1734 \approx 433 \text{MB}$

Two Options

Surface Rendering

Volume Rendering

Threshold volume data.

- Then run our favorite algorithm....
- Hint: rhymes with "starching dudes"

Volume Rendering

- Some data better visualized as a volume, not a surface.
- Idea: Use voxels and transparency.

Raytraced Isosurface

Volume Rendering

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing

Basic Idea

Which best conveys "reality?"

Photograph.

Painting.
A Rough Sea at a Jetty, 1650.
Jacob van Ruysdael.

Computer Graphics
Duncan Brinsmead

source: Jos Stam. Photography changes what we think "reality" looks like.

Reality

A Rough Sea at a Jetty, 1650. - Jacob van Ruysdael.

- This instance in time never happened!
- Perhaps a better match of "subjective reality."
- Better illustration of "what was going on."

NPR

- By doing non-photorealistic graphics!

NPR Pipeline

NPR Research often follows this pipeline...

(1) Study Existing Rendering or Illustration Technique

(2) Extract General Aesthetic Rules

(3) "Algorithmicize"
These Rules

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing

Box Cut

Object-aligned box cut

Window Cut

Window cut

Wedge Cut

Wedge cut

Transverse Tube Cut

Transverse tube cut

Cut Taxonomy

Interactive Cutaway Illustrations of Complex 3D Models

Wilmot Li ¹ Lincoln Ritter¹
Maneesh Agrawala² Brian Curless¹ David Salesin^{1,3}

¹University of Washington ²University of California, Berkeley ³Adobe Systems

(Source: Li et al. InteractiveCutawayIllustrationsofComplex3DModels)

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing

Goal

http://www.cs.princeton.edu/gfx/pubs/Cole_2008_WDP/index.php

Contours

$$\mathbf{n}(\mathbf{p}) \cdot \mathbf{v}(\mathbf{p}) = 0$$

 $\boldsymbol{min}\ n(p)\cdot\boldsymbol{v}(p)$

Suggestive Contours for Conveying Shape

Doug DeCarlo¹ Adam Finkelstein²

Szymon Rusinkiewicz²

Anthony Santella¹

Where Do People Draw Lines?
Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stoddart Barros, Adam Finkelstein, Thomas Funkhouser, and Szymon Rusinkiewicz

Depth Edge Camera

Depth Discontinuities

Internal and external Shape boundaries, Occluding contour, Silhouettes

Shadows

Clutter

Many Colors

Highlight Shape Edges

Mark moving parts

Basic colors

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing

Goal

MapBlast / LineDrive

[Rendering effective route maps:..., Agrawala and Stolte]

MapBlast / LineDrive

Figure 2: The LineDrive system. (a) Given a route as a sequence of roads, LineDrive designs a route map by processing the route through five consecutive stages. (b) The resulting LineDrive map. (c) The same map rendered without applying the generalization techniques performed by LineDrive. The constant scale factor and retention of detailed road shape make it difficult to identify many of the roads.

MapBlast / LineDrive

Practice Problem

Of all of the NPR examples you saw in class today, which did you think was most effective for what it was trying to do and why?