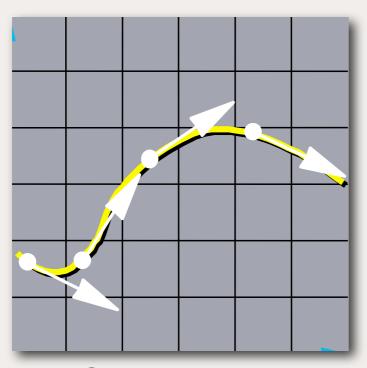
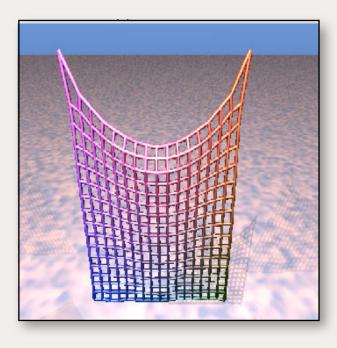
Particle Systems

(and fun things we can do with them)

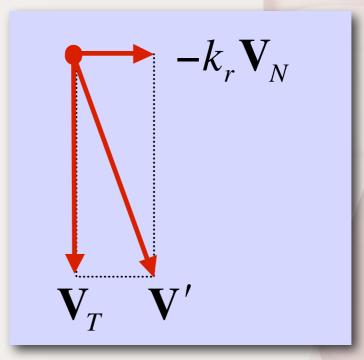
Adrien Treuille



DiffEQ Review

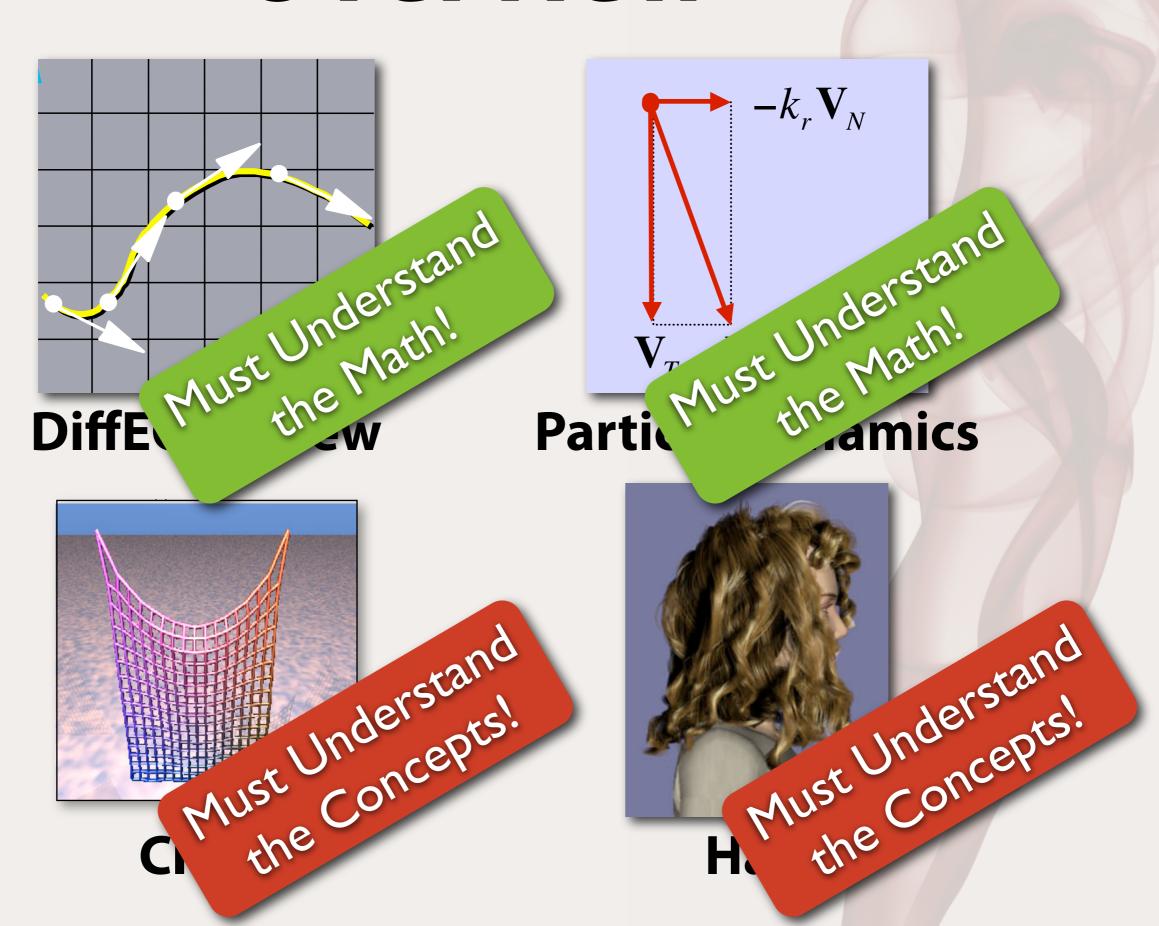


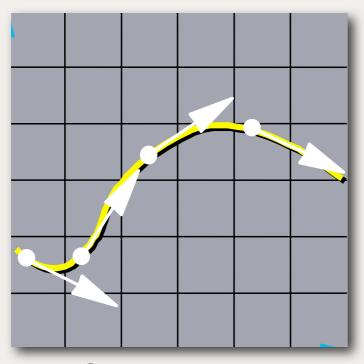
Cloth



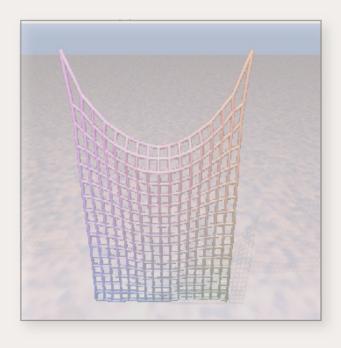
Particle Dynamics

Hair

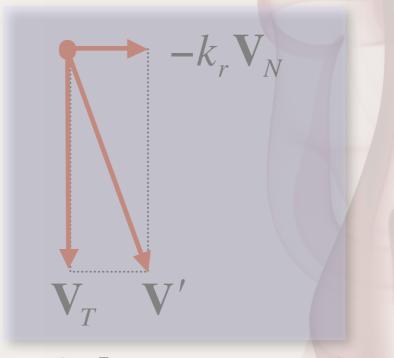




DiffEQ Review



Cloth



Particle Dynamics

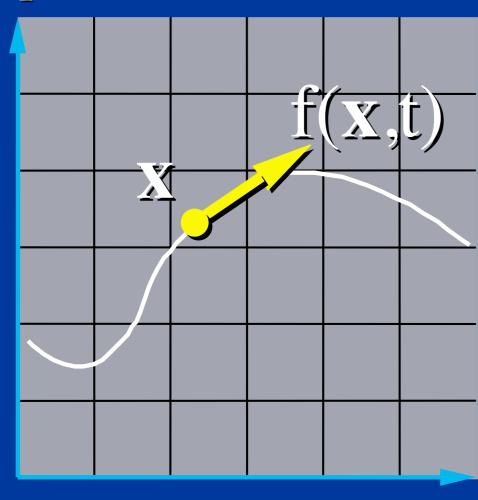
DiffEQ Integration

Differential Equation Basics

Andrew Witkin

A Canonical Differential Equation

 x_1

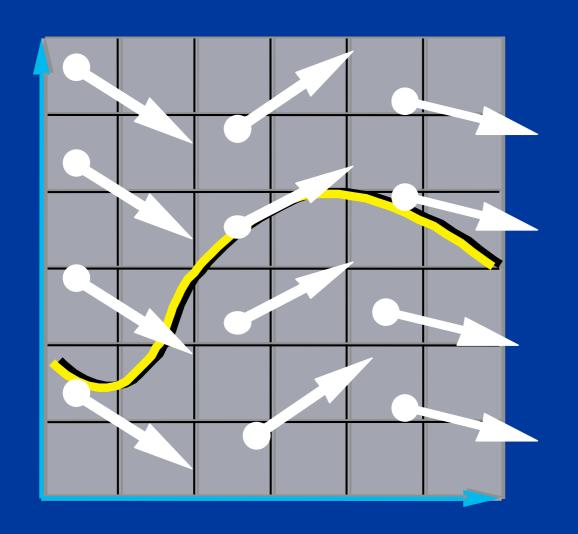


$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- x(t): a moving point.
- f(x,t): x's velocity.

 x_2

Vector Field

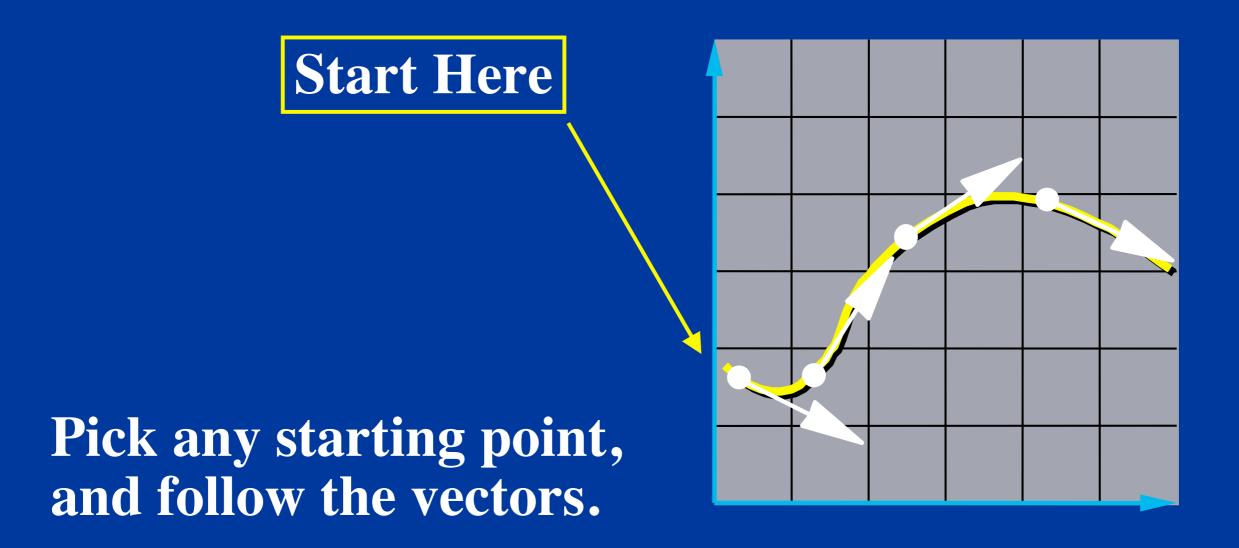


The differential equation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

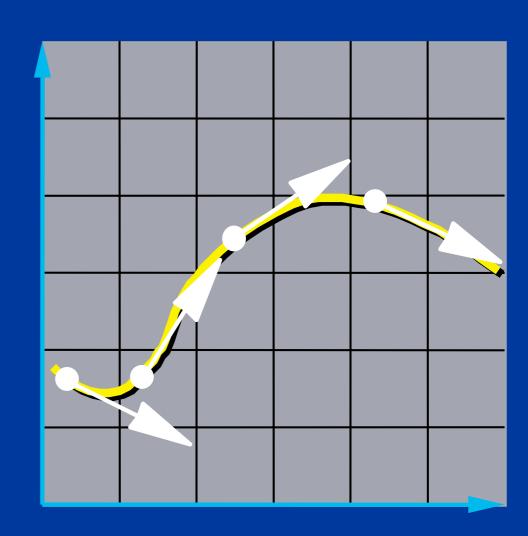
defines a vector field over x.

Integral Curves

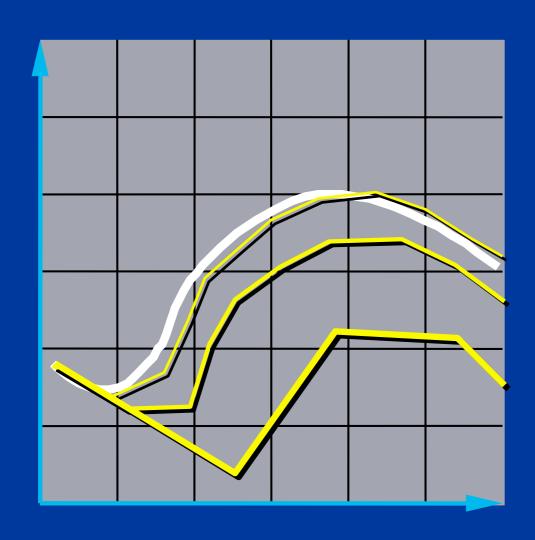


Initial Value Problems

Given the starting point, follow the integral curve.



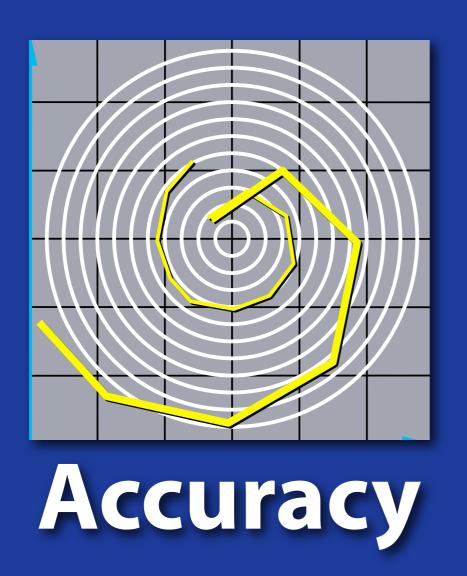
Euler's Method

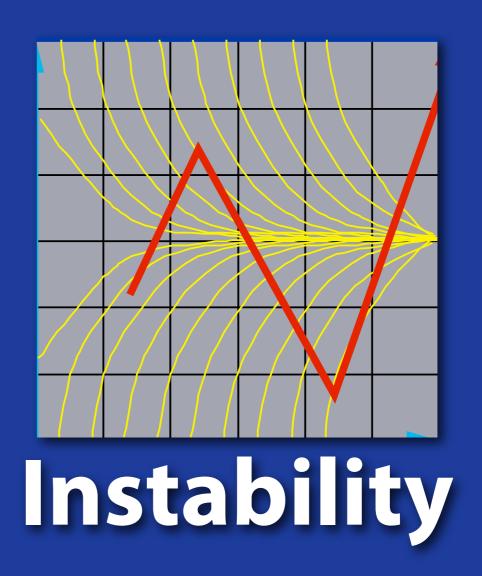


- Simplest numerical solution method
- Discrete time steps
- Bigger steps, bigger errors.

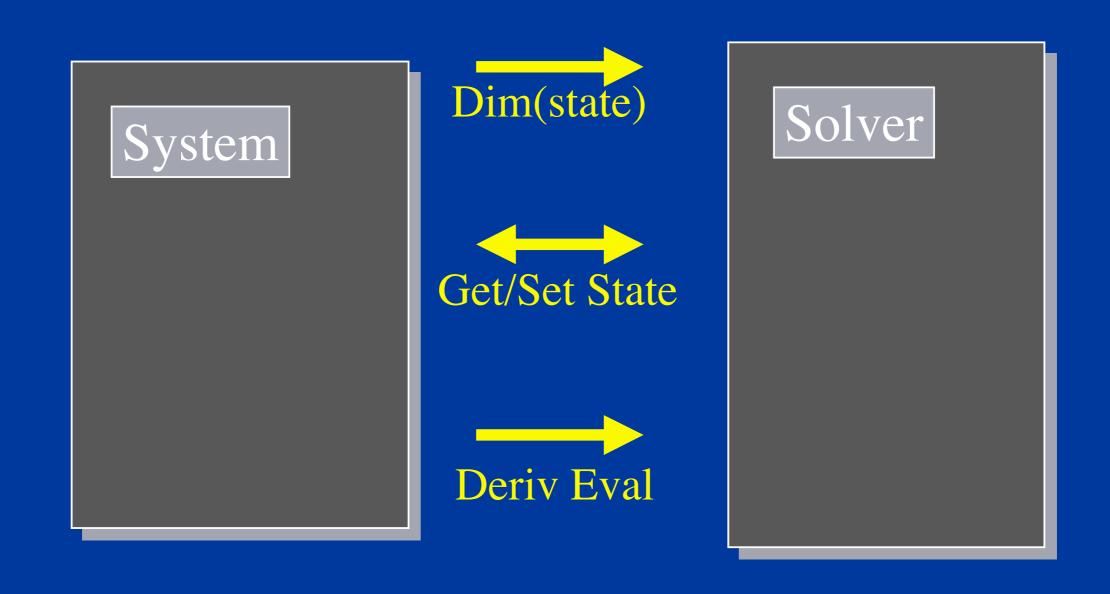
$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}(\mathbf{x}, t)$$

Two Problems





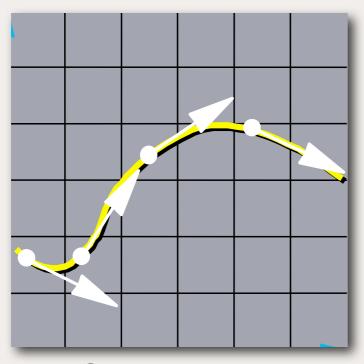
Solver Interface



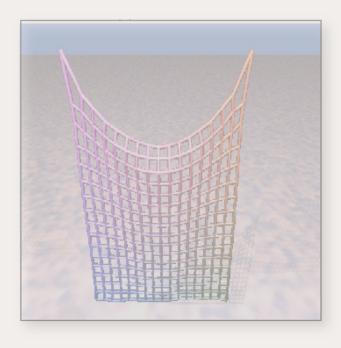
A Code Fragment

```
void eulerStep(Sys sys, float h) {
   float t = getTime(sys);
   vector<float> x0, deltaX;

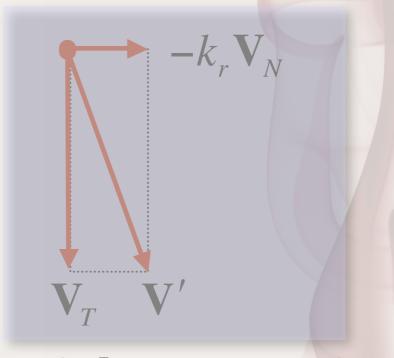
   t = getTime(sys);
   x0 = getState(sys);
   deltaX = derivEval(sys,x0, t);
   setState(sys, x0 + h*deltaX, t+h);
}
```



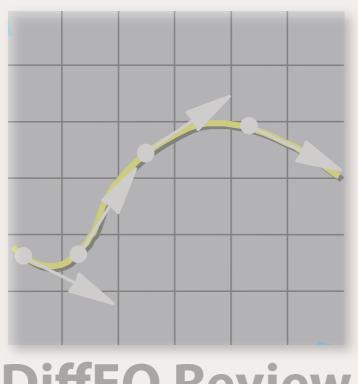
DiffEQ Review



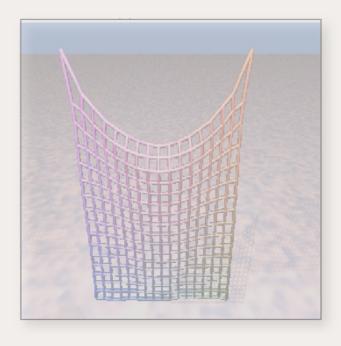
Cloth



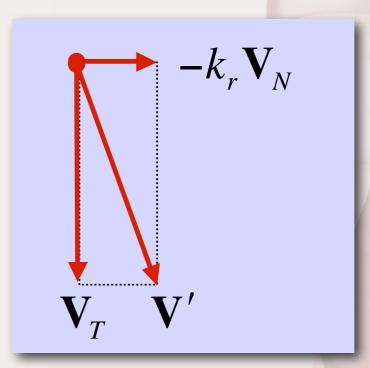
Particle Dynamics



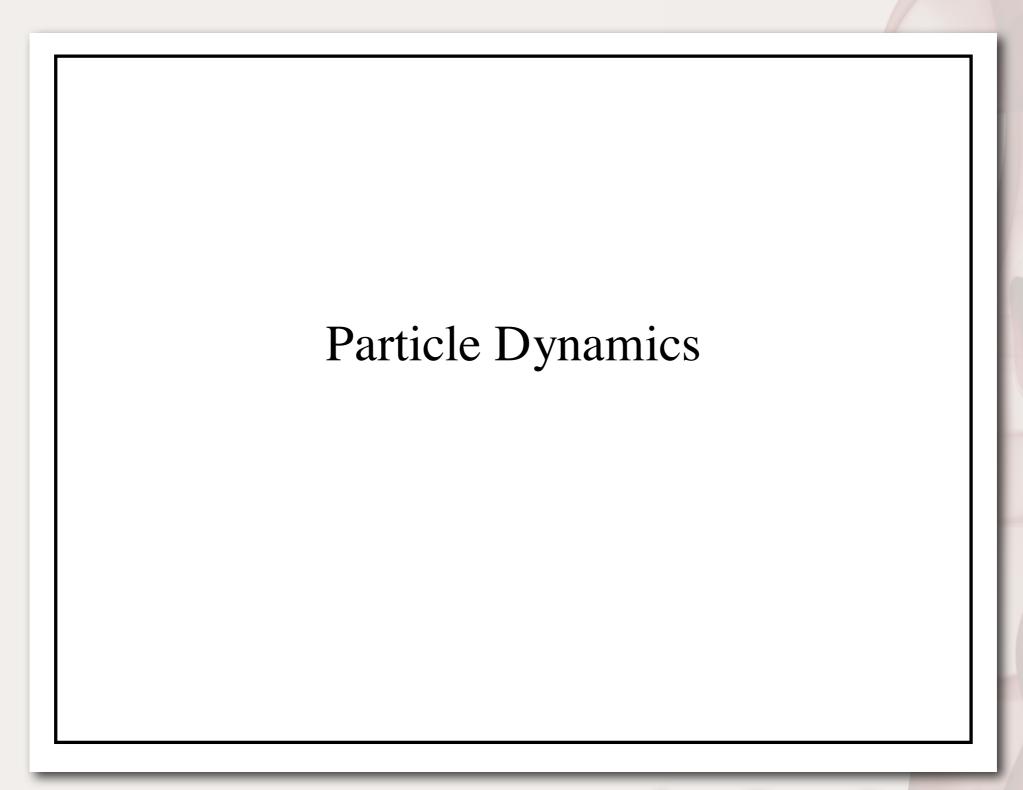
DiffEQ Review



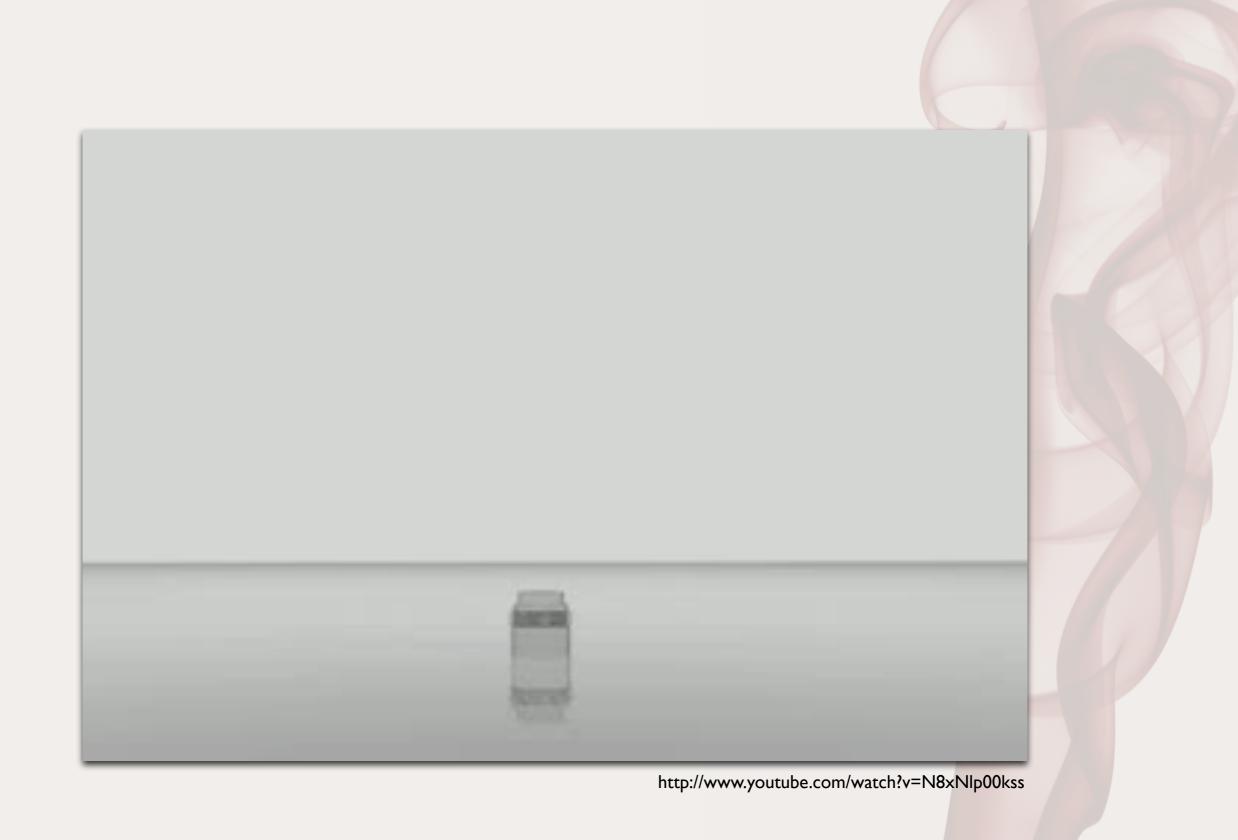
Cloth



Particle Dynamics



from Zoran Popović



- One lousy particle
- Particle systems
- Forces: gravity, springs
- Implementation

Newtonian particle

- Differential equations: f=ma
- Forces depend on:
- Position, velocity, time

$$\ddot{x} = \frac{f(x, \dot{x})}{m}$$

Second order equations

$$\ddot{x} = \frac{f(x, \dot{x})}{m}$$

Has 2nd derivatives

$$\dot{x} = v$$
 Add a new variable v to get $\dot{v} = \frac{f(x,\dot{x})}{m}$ a pair of coupled 1st order equations

Phase space

$$\begin{bmatrix} x \\ v \end{bmatrix}$$

Concatenate x and v to make a 6-vector: position in phase space

$$\hat{\dot{v}}$$

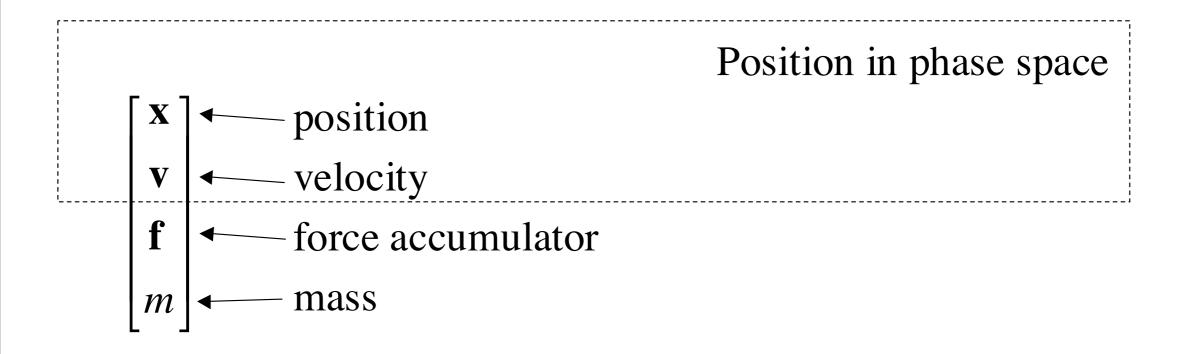
Velocity on Phase space:

Another 6-vector

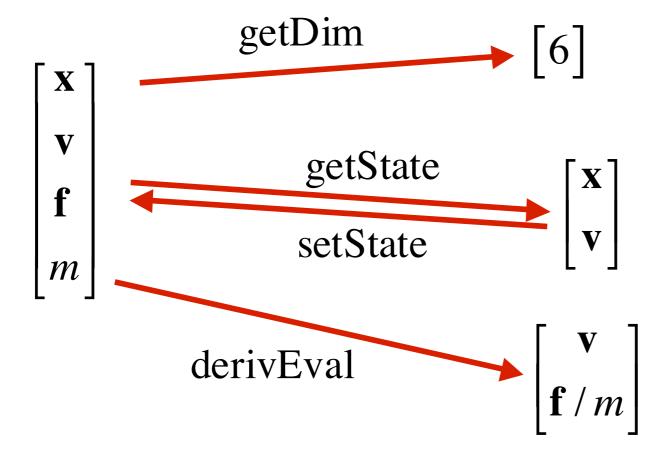
$$\begin{bmatrix} \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \\ f/m \end{bmatrix}$$

A vanilla 1st-order differential equation

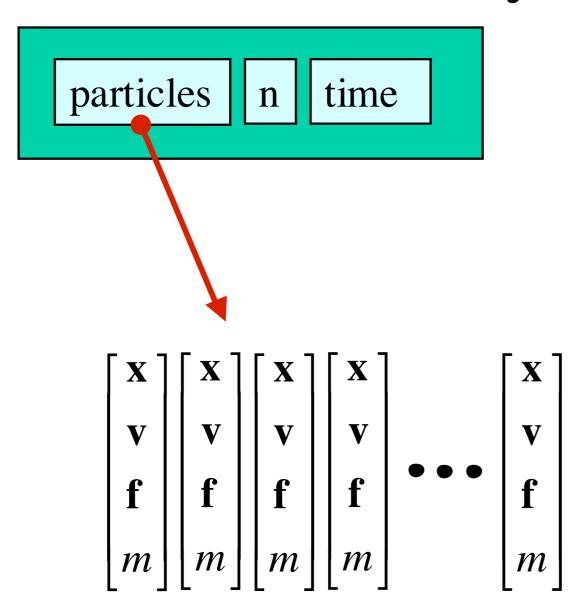
Particle structure



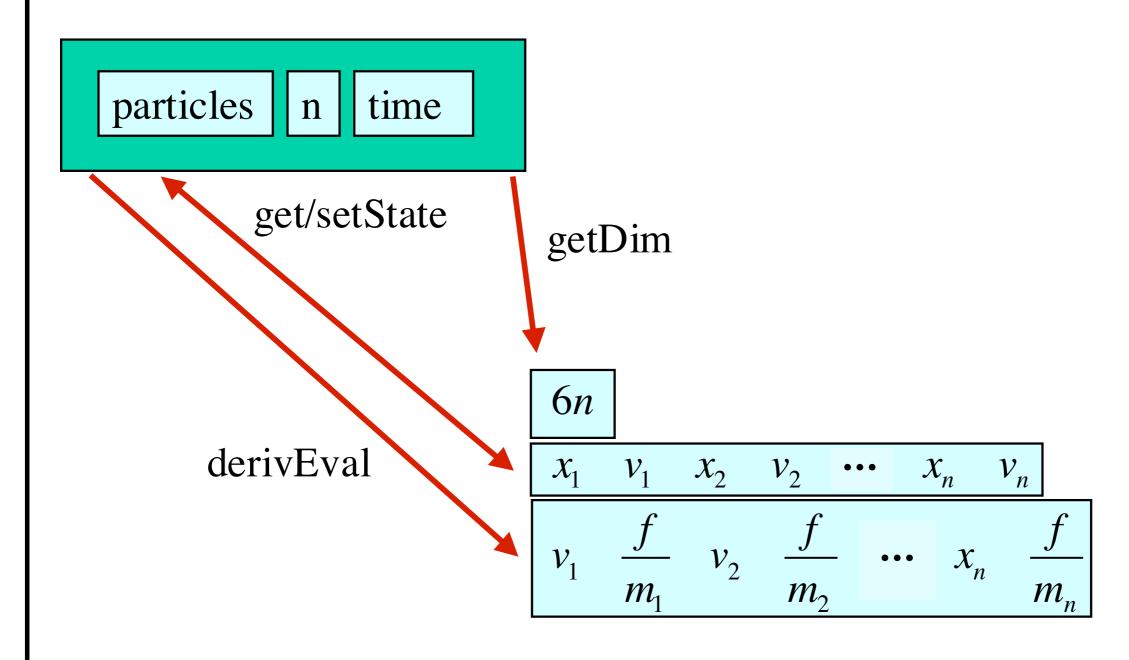
Solver interface



Particle systems



Solver interface



Differential equation solver

$$\begin{bmatrix} \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \\ f/m \end{bmatrix}$$

Euler method:
$$x(t+h) = x(t) + h \cdot \mathcal{X}(t)$$

 $\mathbf{x}_{i+1} = \mathbf{x}_i + \nabla t \cdot \dot{x}$
 $\mathbf{v}_{i+1} = \mathbf{v}_i + \nabla t \cdot \dot{v}$

Gets very unstable for large Vt

Higher order solvers perform better: (e.g. Runge-Kutta)

derivEval loop

- 1. Clear forces
 - Loop over particles, zero force accumulators
- 2. Calculate forces
 - Sum all forces into accumulators
- 3. Gather
 - Loop over particles, copying v and f/m into destination array

Forces

- Constant (gravity)
- Position/time dependent (force fields)
- Velocity-dependent (drag)
- N-ary (springs)

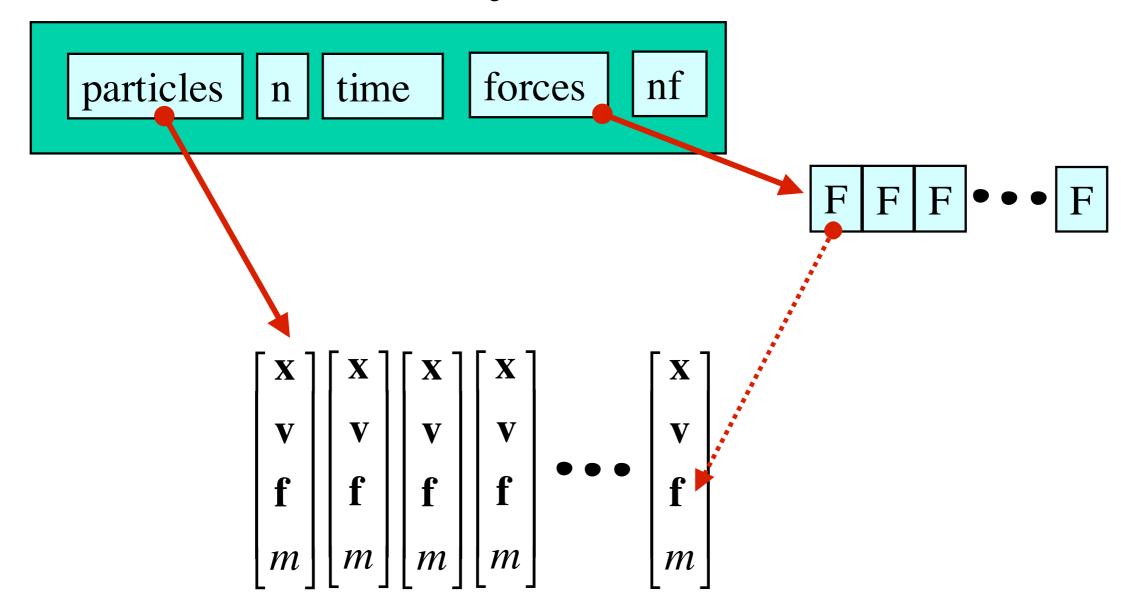
Force structures

Force objects are black boxes that point to the particles they influence, and add in their contribution into the force accumulator.

Global force calculation:

• Loop, invoking force objects

Particle systems with forces



Gravity

Force law:

$$\mathbf{f}_{grav} = m\mathbf{G}$$

Viscous drag

Force law:

$$\mathbf{f}_{drag} = -k_{drag} \mathbf{v}$$

$$p->f -= F->k * p->v$$

Damped spring

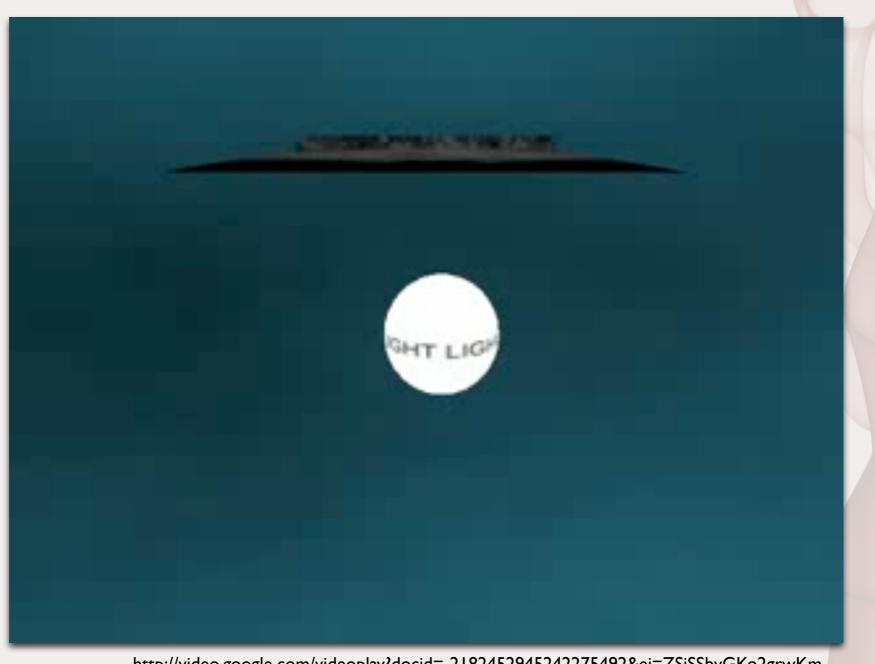
Force law:

$$\mathbf{f}_{1} = -\left[k_{s}(\left|\Delta\mathbf{x}\right| - \mathbf{r}) + k_{d}\left(\frac{\Delta\mathbf{v}\Delta\mathbf{x}}{\left|\Delta\mathbf{x}\right|}\right)\right] \frac{\Delta\mathbf{x}}{\left|\Delta\mathbf{x}\right|}$$

$$\mathbf{f}_{2} = -\mathbf{f}_{1}$$

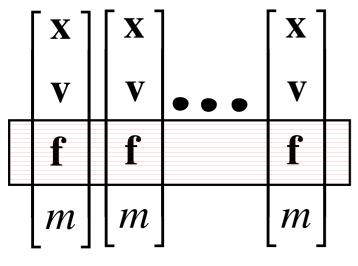
$$\mathbf{r} = \text{rest length}$$

$$\Delta\mathbf{x} = x_{1} - x_{2}$$

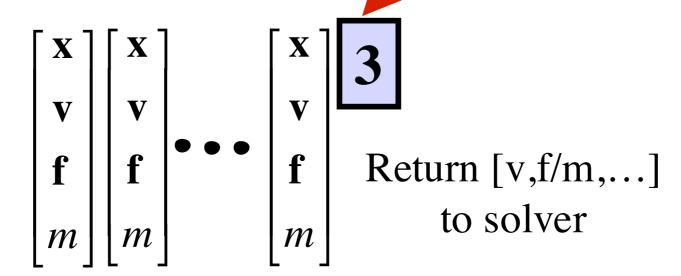


http://video.google.com/videoplay?docid=-2182452945242275492&ei=ZSjSSbvGKo2grwKm-LHPAQ&q=particle+system+spring&hl=en&client=safari

derivEval Loop

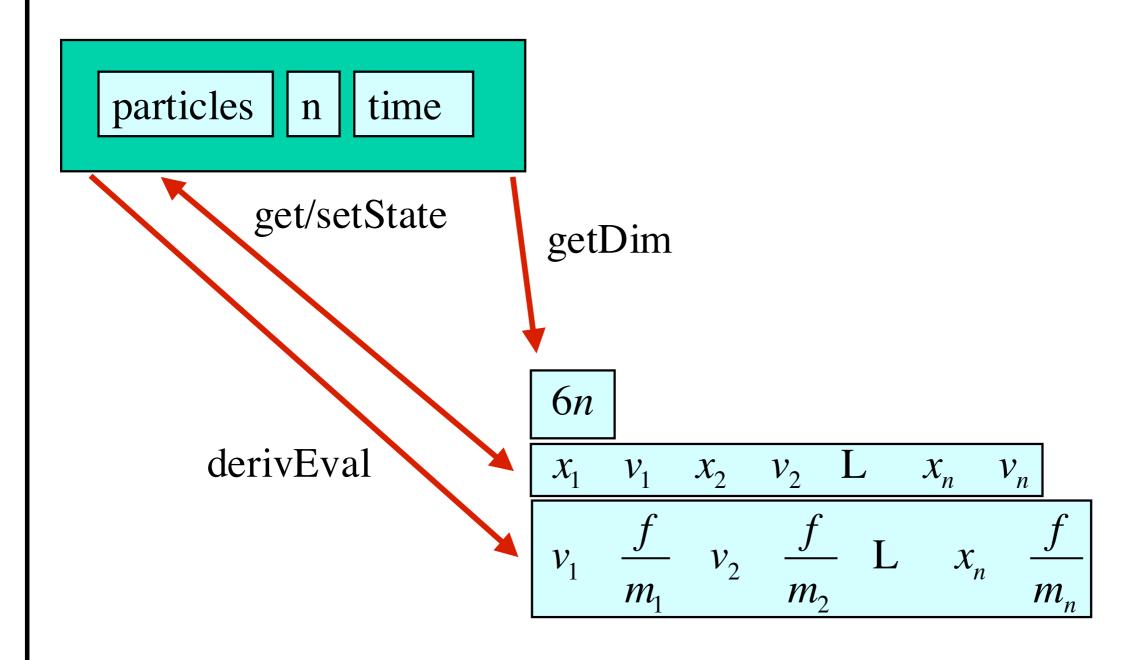


Clear force accumulators



Apply forces to particles

Solver interface



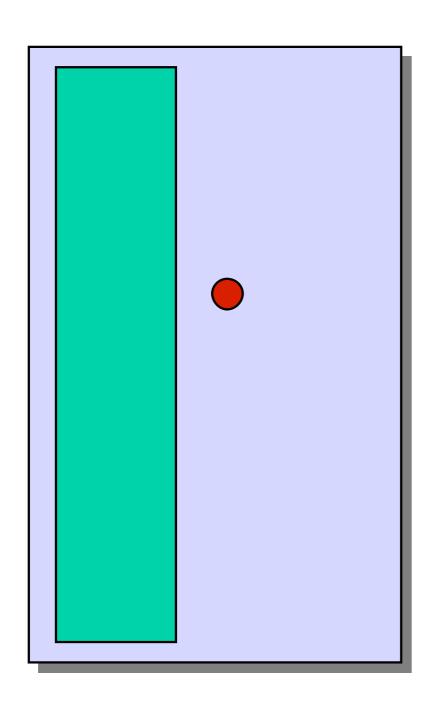
Differential equation solver

$$\begin{bmatrix} \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \\ f/m \end{bmatrix}$$

Euler method:

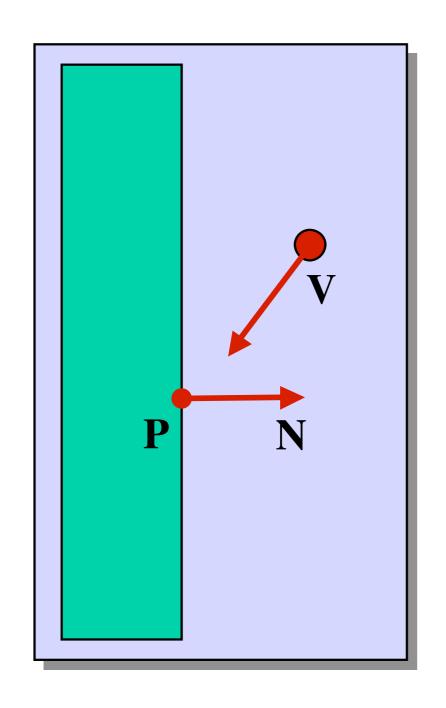
$$\begin{bmatrix} x_{1}^{i+1} \\ v_{1}^{i+1} \\ \vdots \\ v_{n}^{i+1} \end{bmatrix} = \begin{bmatrix} x_{1}^{i} \\ v_{1}^{i} \\ \vdots \\ v_{n}^{i} \end{bmatrix} + Vt \begin{bmatrix} v_{1}^{i} \\ f_{1}^{i} / m_{1} \\ \vdots \\ v_{n}^{i} \\ \vdots \\ v_{n}^{i} \end{bmatrix}$$

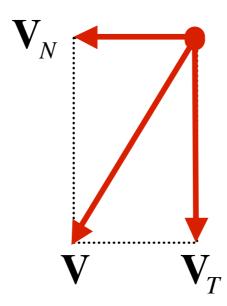
Bouncing off the walls



- Add-on for a particle simulator
- For now, just simple point-plane collisions

Normal and tangential components

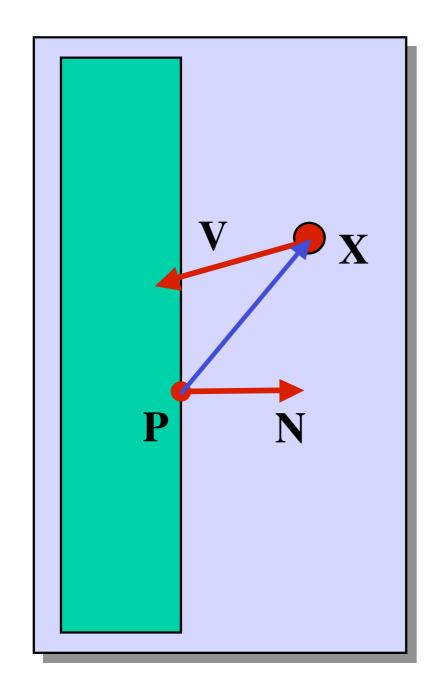




$$V_N = (N \cdot V)N$$

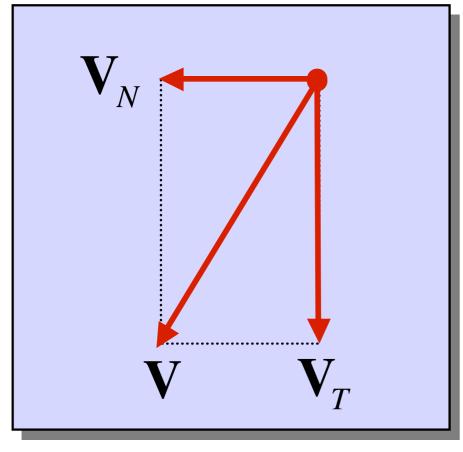
$$V_T = V - V_N$$

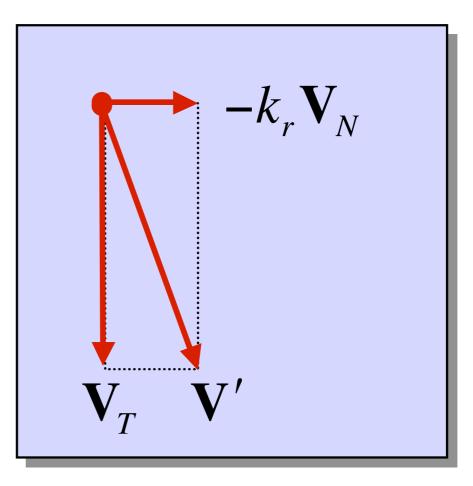
Collision Detection



 $(\mathbf{X} - \mathbf{P}) \cdot \mathbf{N} < \varepsilon$ Within e of the wall $\mathbf{N} \cdot \mathbf{V} < 0$ Heading in

Collision Response



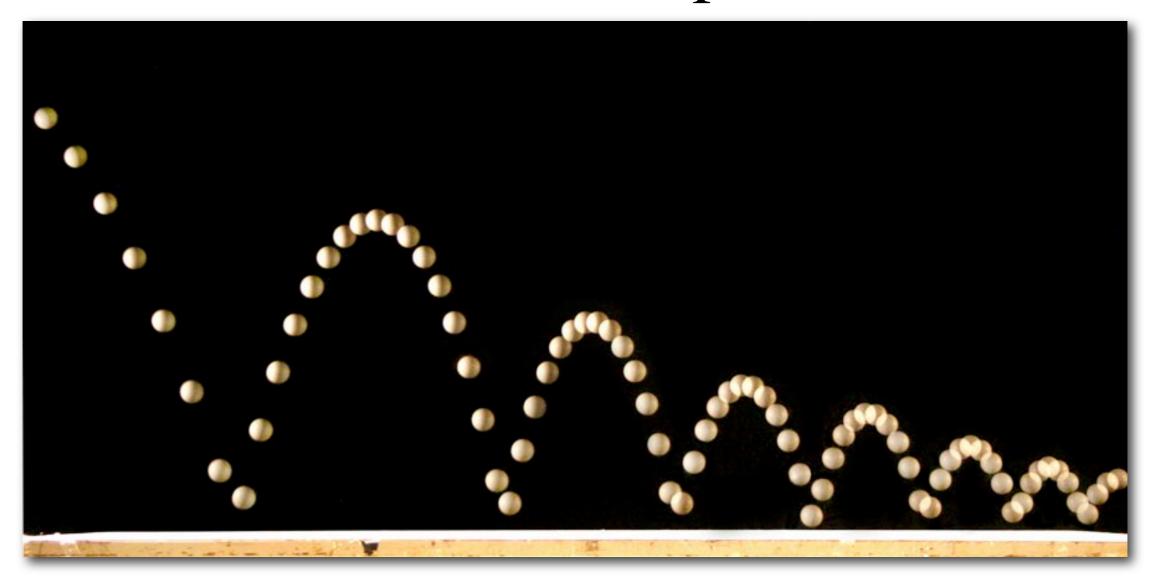


before

after

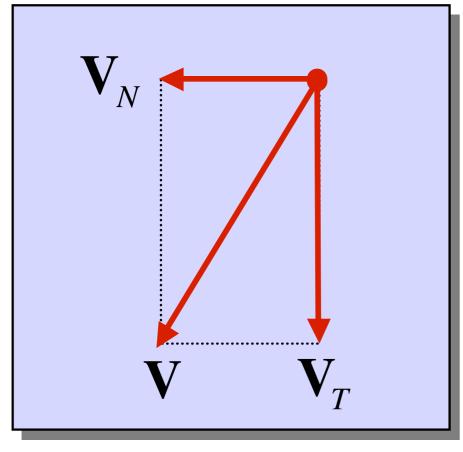
$$\mathbf{V}' = \mathbf{V}_T - k_r \mathbf{V}_N$$

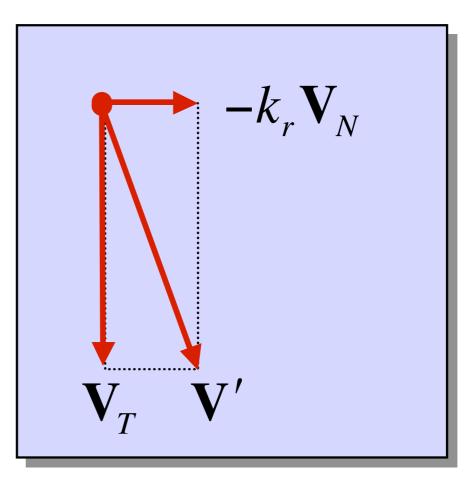
Collision Response



$$\mathbf{V}' = \mathbf{V}_T - k_r \mathbf{V}_N$$

Collision Response





before

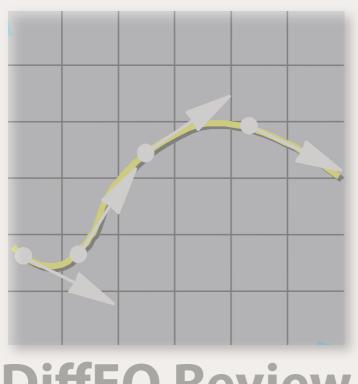
after

$$\mathbf{V}' = \mathbf{V}_T - k_r \mathbf{V}_N$$

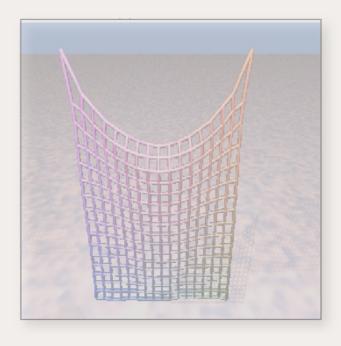
Summary

- Physics of a particle system
- Various forces acting on a particle
- Combining particles into a particle system
- Euler method for solving differential equations

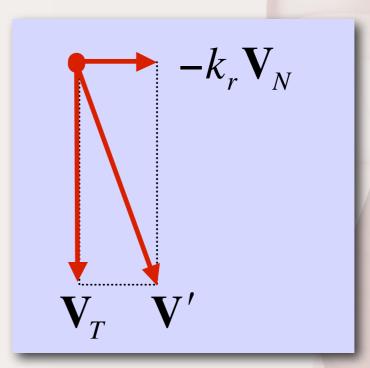
Overview



DiffEQ Review

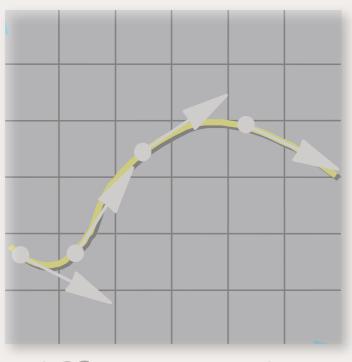


Cloth

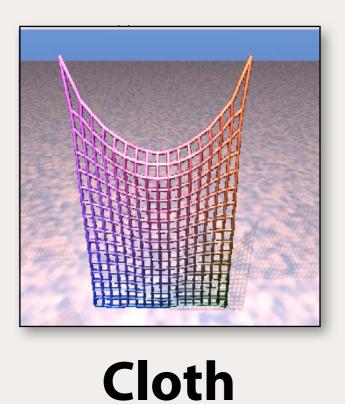


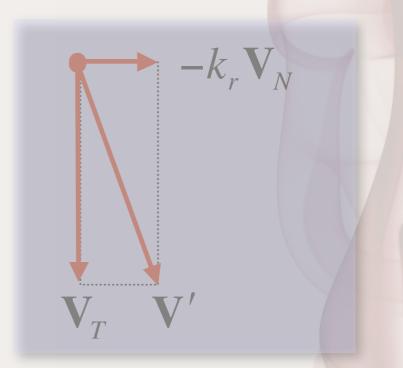
Particle Dynamics

Overview



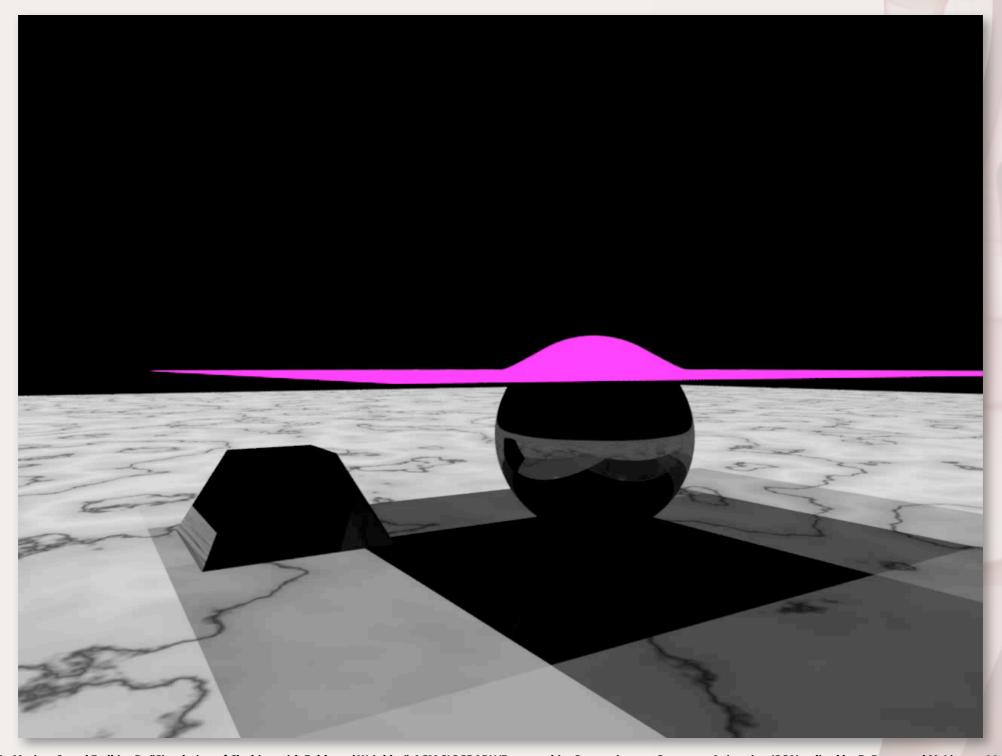
DiffEQ Review





Particle Dynamics

Woven Cloth



Bridson, R., Marino, S. and Fedkiw, R., "Simulation of Clothing with Folds and Wrinkles", ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), edited by D. Breen and M. Lin, pp. 28-36, 2003.

Knit Cloth

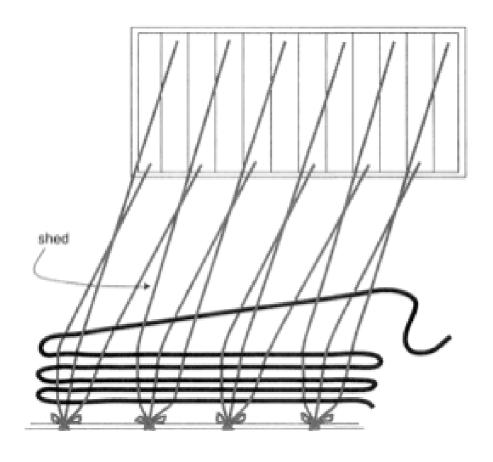
Jonathan Kaldor, Doug L. James, and Steve Marschner. Simulating Knitted Cloth at the Yarn Level. SIGGRAPH 2008.

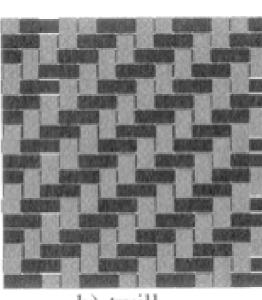
What is cloth?

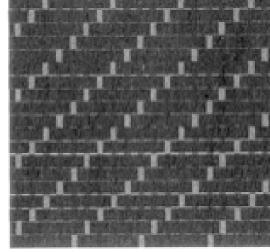
Cloth Animation

Christopher Twigg March 4, 2003

- 2 basic types: woven and knit
- We'll restrict to woven
 - Warp vs. weft







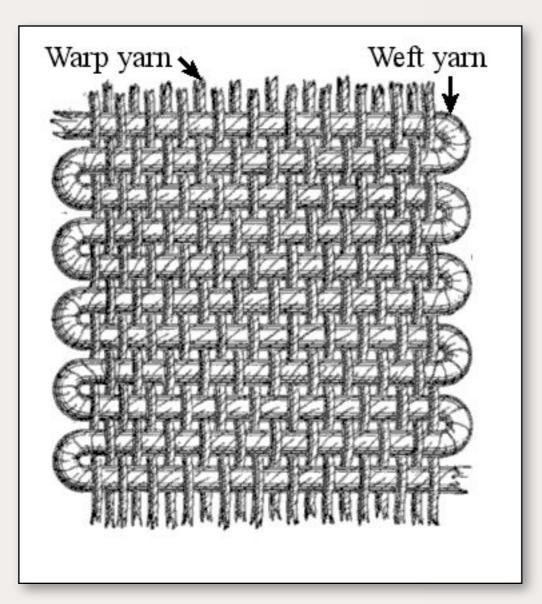
b) twill

c) satin

Figure 1.8. The weaving process.

House, Breen [2000]

Warp and Weft

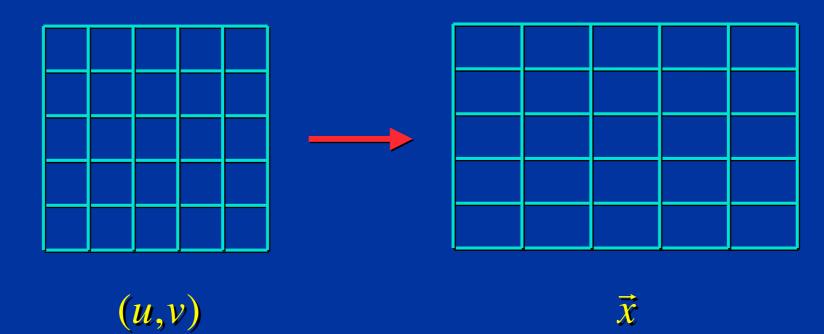


source: Wikipedia

Cloth and Fur Energy Functions

Michael Kass

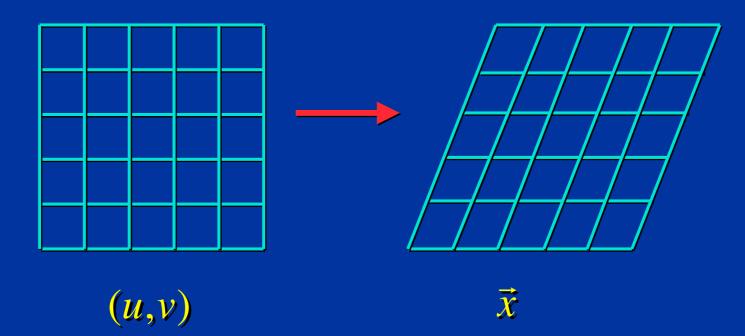
Stretch (Continuum Version)



$$S_{u} = \left\| \frac{\partial \vec{x}}{\partial u} \right\| - 1$$

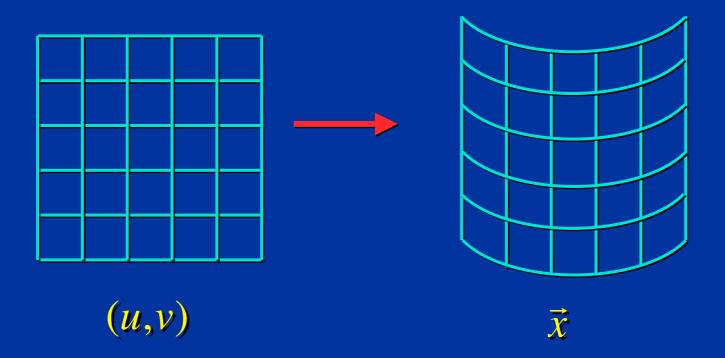
$$E = \frac{1}{2}k\int (S_u^2 + S_v^2)du\,dv$$

Shear (Continuum Version)



$$\theta = \cos^{-1}\left(\frac{\widehat{\partial x}}{\partial u} \cdot \frac{\widehat{\partial x}}{\partial v}\right) \qquad E = \frac{1}{2}k\int \theta^2 du \, dv$$

Bend (Continuum Version)

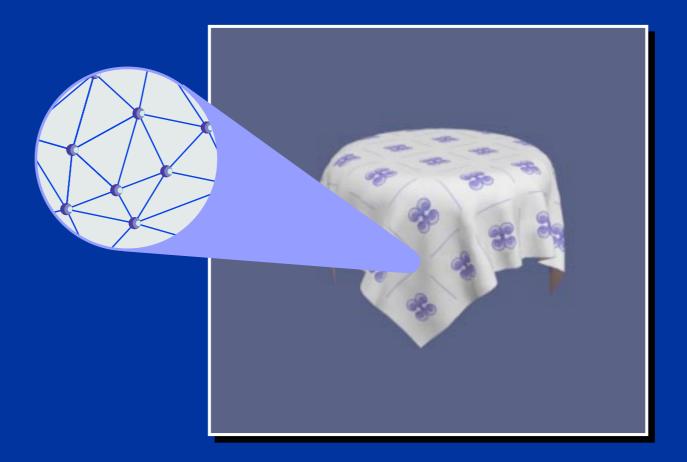


$$E = \frac{1}{2}k\int (\kappa_u^2 + \kappa_v^2)du\,dv$$

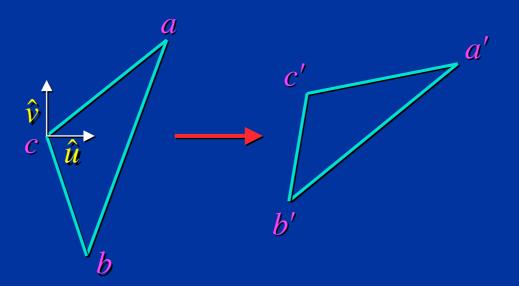
Resitence To...

- Stretching
- Shearing
- Bending

Discretization



Triangle Energy



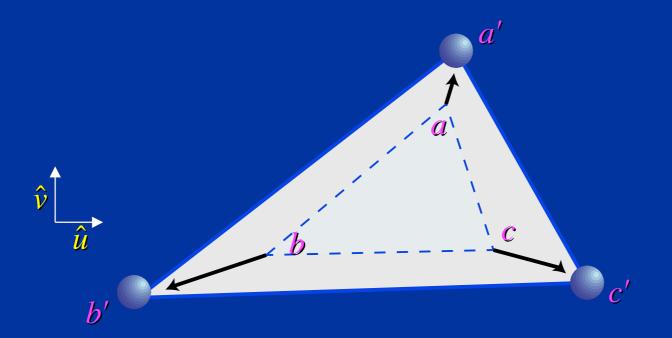
First, compute the affine transformation T that maps: $T:a \rightarrow c'$

$$b \rightarrow b'$$

$$c \rightarrow c'$$

$$c \rightarrow c'$$

Triangle Stretch Energy



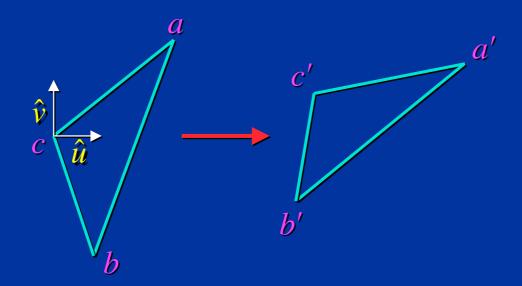
Now compute the stretch energy.

$$S_u = ||T(\hat{u})|| - 1$$

$$S_u = ||T(\hat{u})|| - 1$$

$$E_{\text{stretch}} = \frac{1}{2}k(S_u^2 + S_v^2)A$$

Triangle Shear Energy



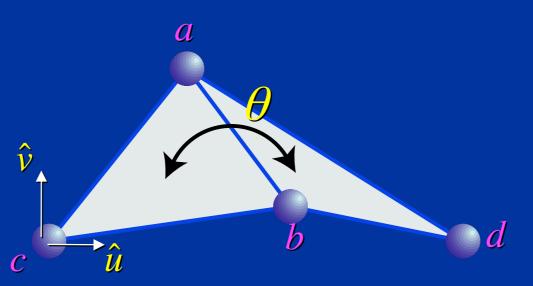
Next compute the shear energy.

$$\theta = \cos^{-1}(T(\hat{u}) \cdot T(\hat{v}))$$

$$E_{\text{shear}} = \frac{1}{2}k\theta^2 A$$

$$E_{\text{shear}} = \frac{1}{2}k\theta^2 A$$

Triangle Bend Energy



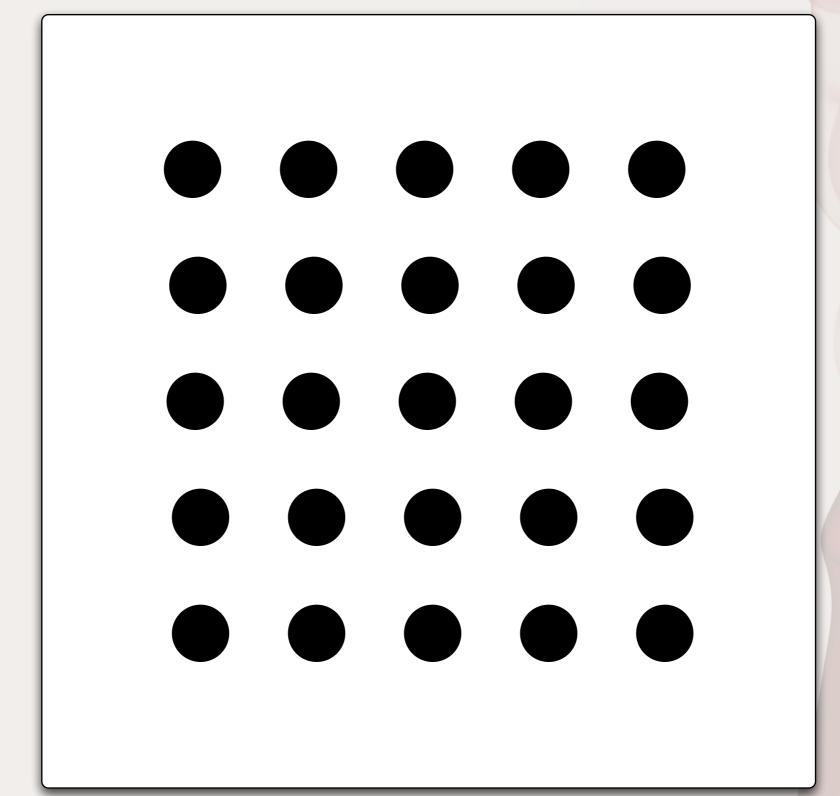
Finally compute the bend energy.

$$K = \frac{\theta}{l_{perp}}$$

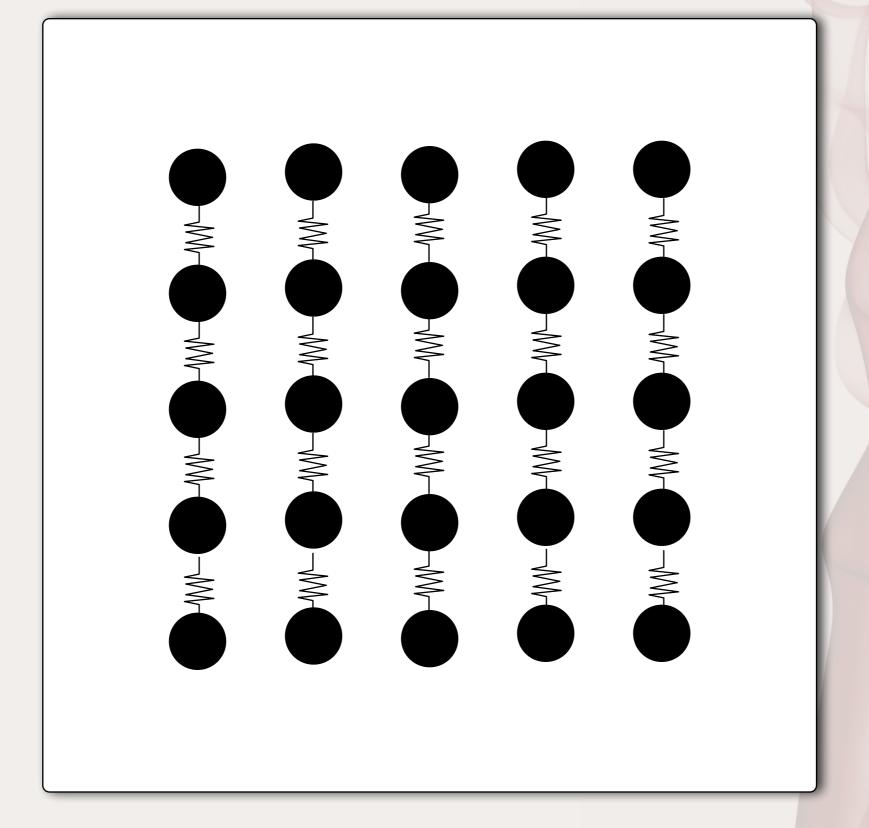
$$K = \frac{1}{l_{perp}}$$

$$E_{bend} = \frac{k}{2} (\kappa^2) A$$

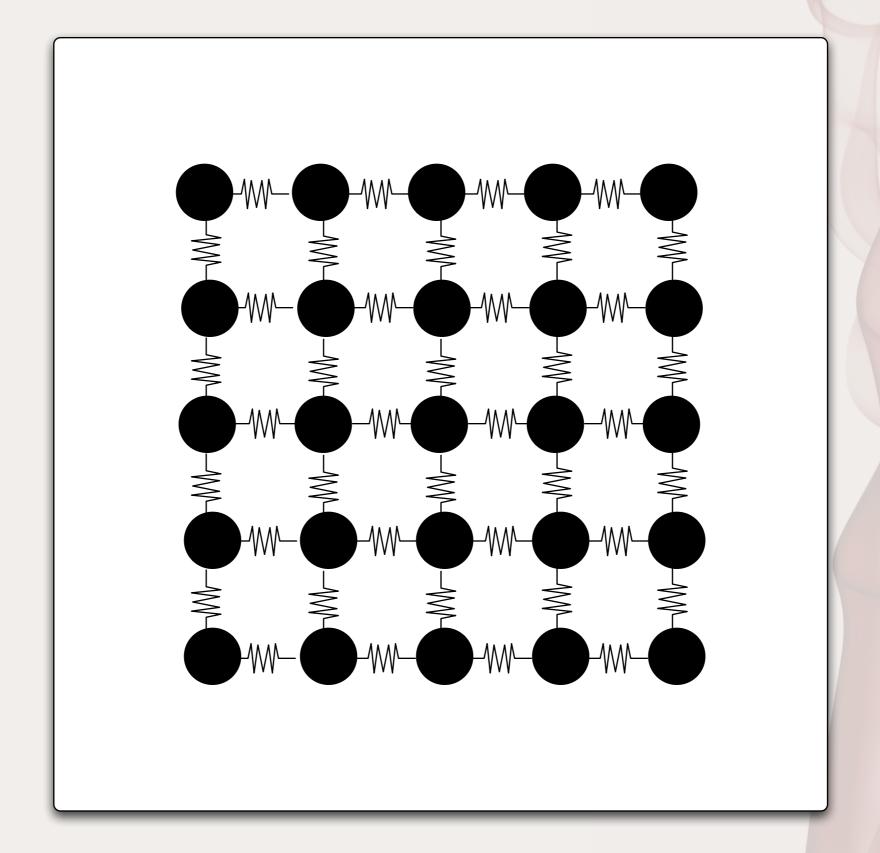
Basic Model



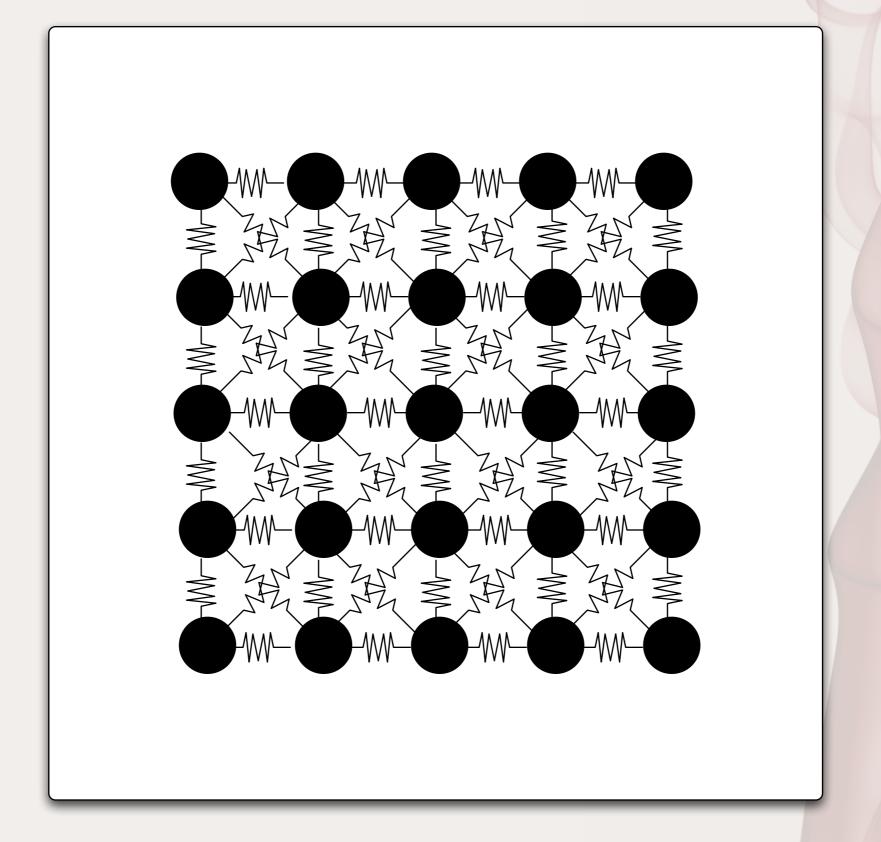
Warp Srings



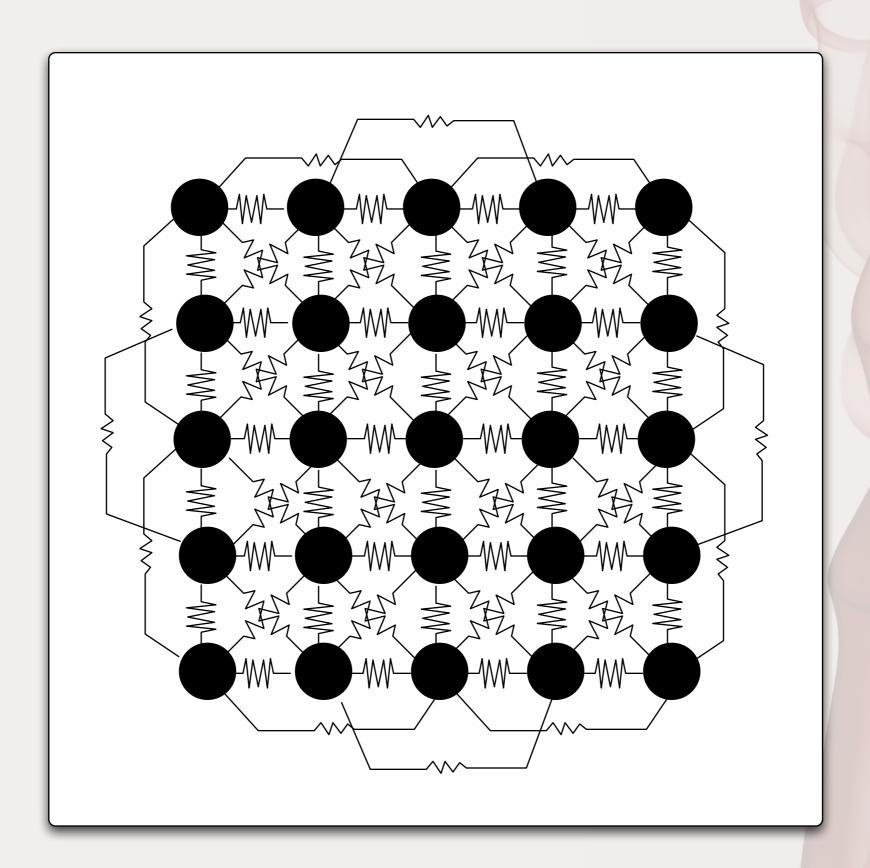
Weft Springs



Shear Springs



Bend Springs



Parameters

- Given stretch, shear, and bending constants...
- How would you make a wrinkly t-shirt, thick cloth, or non-uniform cloth?

Creating Clothes

 How could we create the 3D model the clothes for a character?

Non-flat Cloth

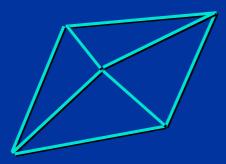
Non-flat cloth is strange stuff:

A baseball with no seams?

Wrinkles give strength?

Clothing cut out of a volume?

Convexities that pop?



Even 4 Triangles are over-constrained: 16 rest angles, 8 rest lengths. 24 constraints on 15 dofs. Must be consistent!

Rest Mesh Options

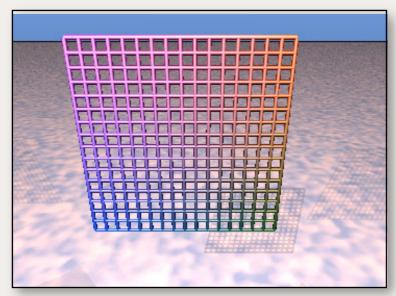
Model in 3D

- Clothing already on characters.
- Can directly craft desired 3D shape.
- Annotate warp/weft directions.
- Clothing probably will not locally flatten.

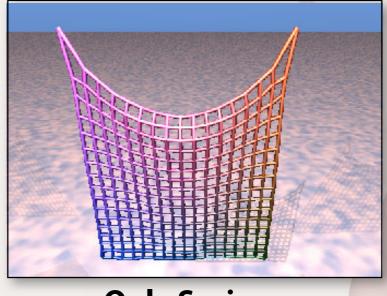
Model in 2D

- Must put clothing on characters
- Hire a tailor to get the pattern right.
- Sew parts together.
- Clothing guaranteed to flatten locally.
- Greater realism.

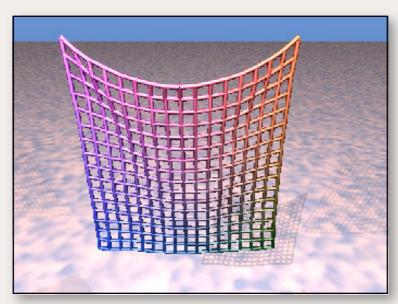
Springs vs. Constraints



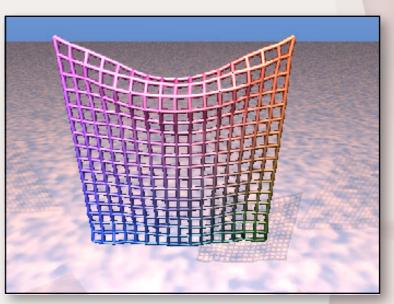
Before Simulation



Only Springs



Stretch Constraints

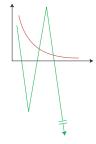


Stretch+Shear Constraints

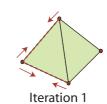
Source: Xavier Provot

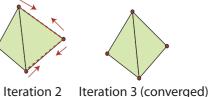
Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior

Avoiding stiffness (2)

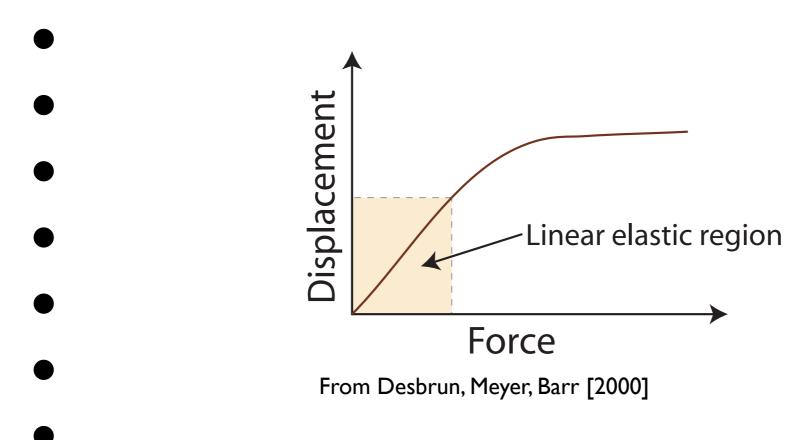


Popular for interactive applications





- Justification
 - Biphasic spring model



Plausible dynamics

Cloth Animation

Christopher Twigg March 4, 2003

Efficient Simulation of Inextensible Cloth

Rony Goldenthal
The Hebrew University
Columbia University

David Harmon Columbia University

Raanan Fattal UC Berkeley

Michel Bercovier
The Hebrew University

Eitan Grinnspun Columbia University

Developable Surfaces

Animating Developable Surfaces using Nonconforming Elements

Elliot English & Robert Bridson University of British Columbia

Developable Surfaces

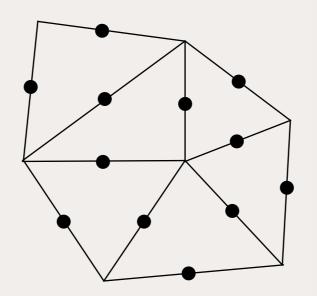


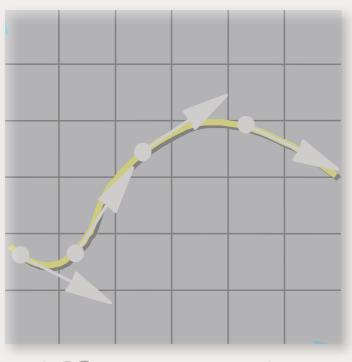
Figure 2: Schematic of nonconforming variables, located at midpoints of edges between triangles. While continuous at these points, the surface may be discontinuous along the rest of each edge.

Developable Surfaces

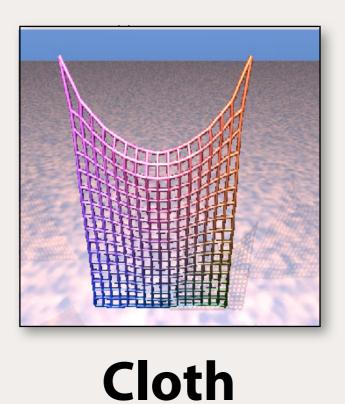
Animating Developable Surfaces using Nonconforming Elements

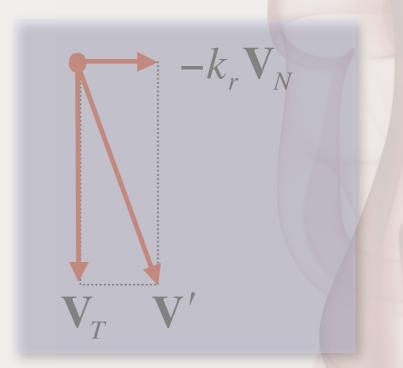
Elliot English & Robert Bridson University of British Columbia

Overview



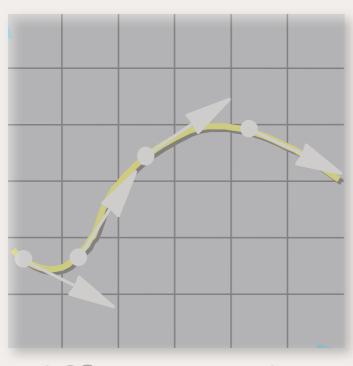
DiffEQ Review



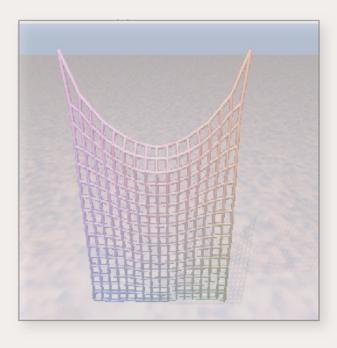


Particle Dynamics

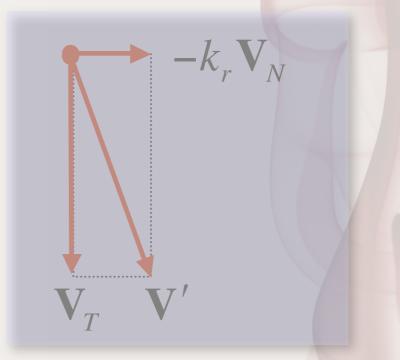
Overview



DiffEQ Review



Cloth



Particle Dynamics

Hair

Real Hair: Curly

Short curly hair

Real Hair: Straight

Long smooth hair

Real Hair

- Typical human head has 150k-200k individual strands.
- Dynamics not well understood.
 - Subject still open to debate.

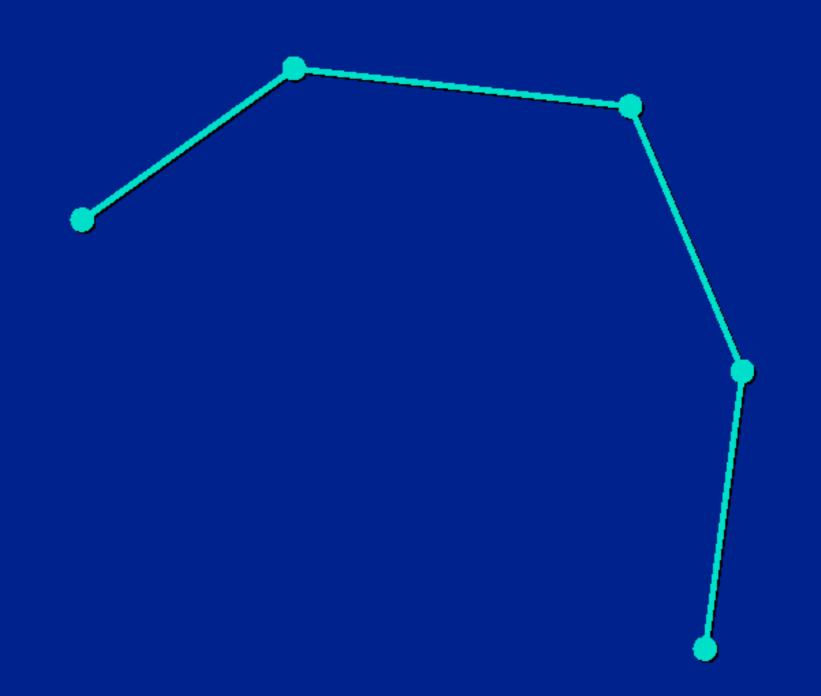
Recall...

Cloth and Fur Energy Functions

Michael Kass

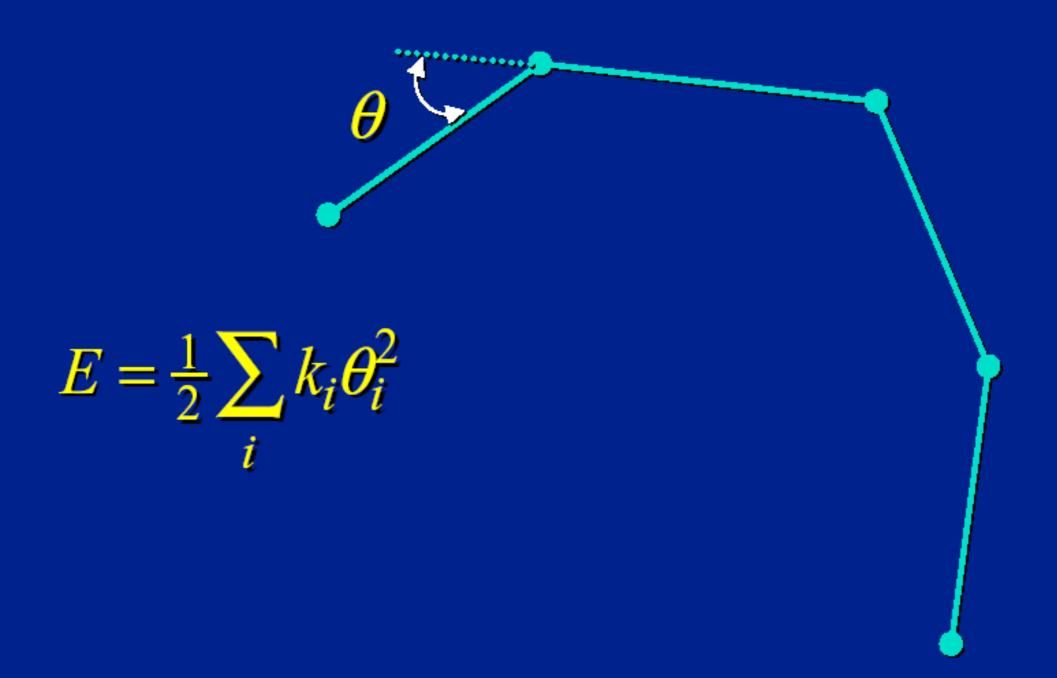
Hair Model

Limp hair: Just a set of springs.



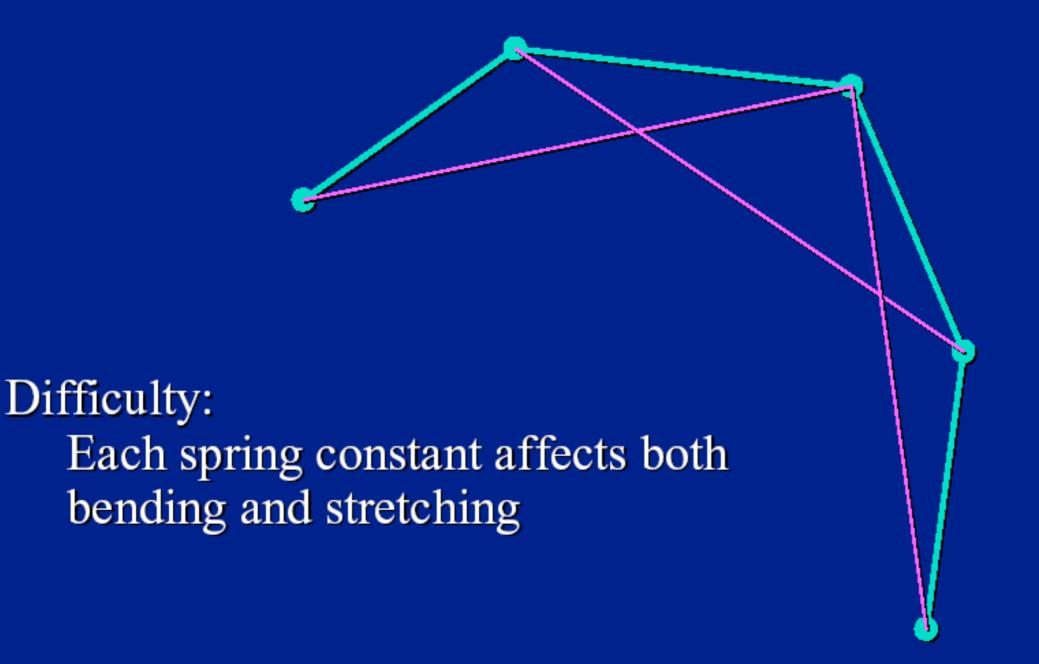
Hair Model

Add body: Angular Springs



Hair Model

Alternative: More Linear Springs



Problems

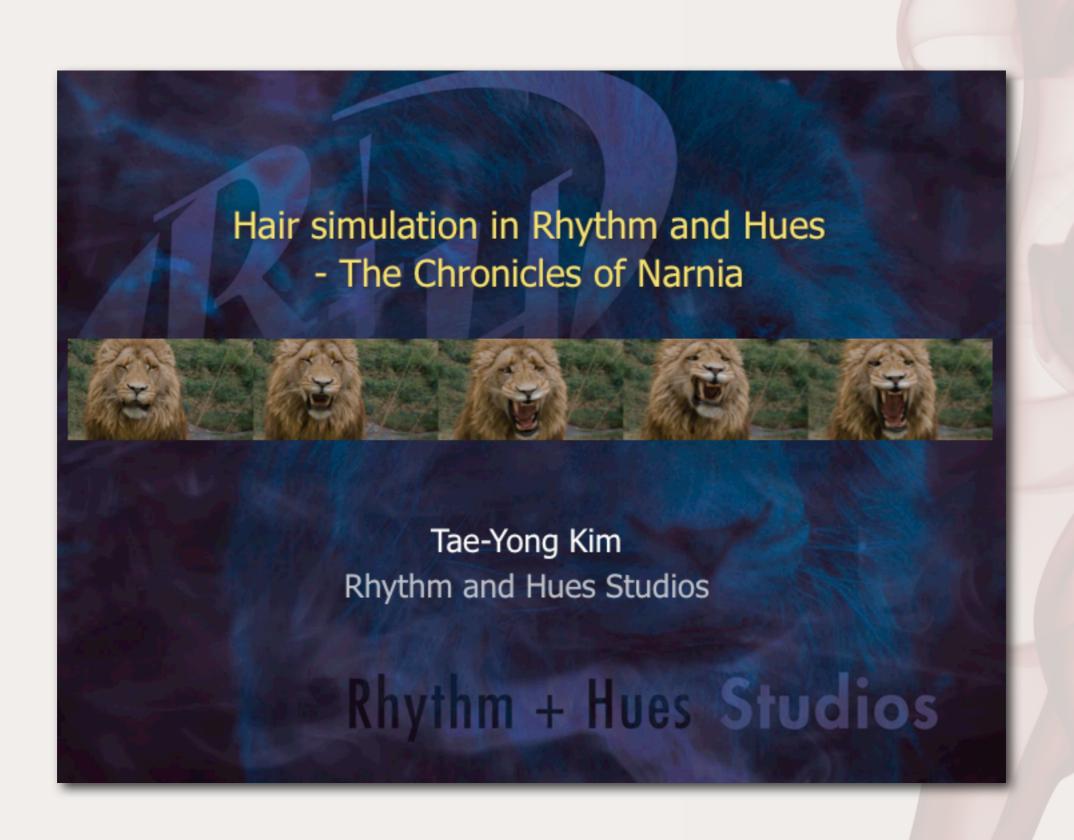
The linear spring model is very simple but has several problems:

- Not length preserving.
- No torsion forces (twist).

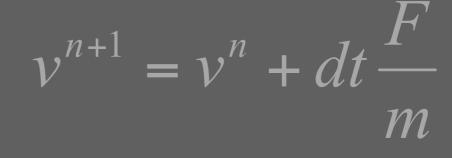
Problems

The linear spring model is very simple but has several problems:

- Not length preserving.
- No torsion forces (twist).



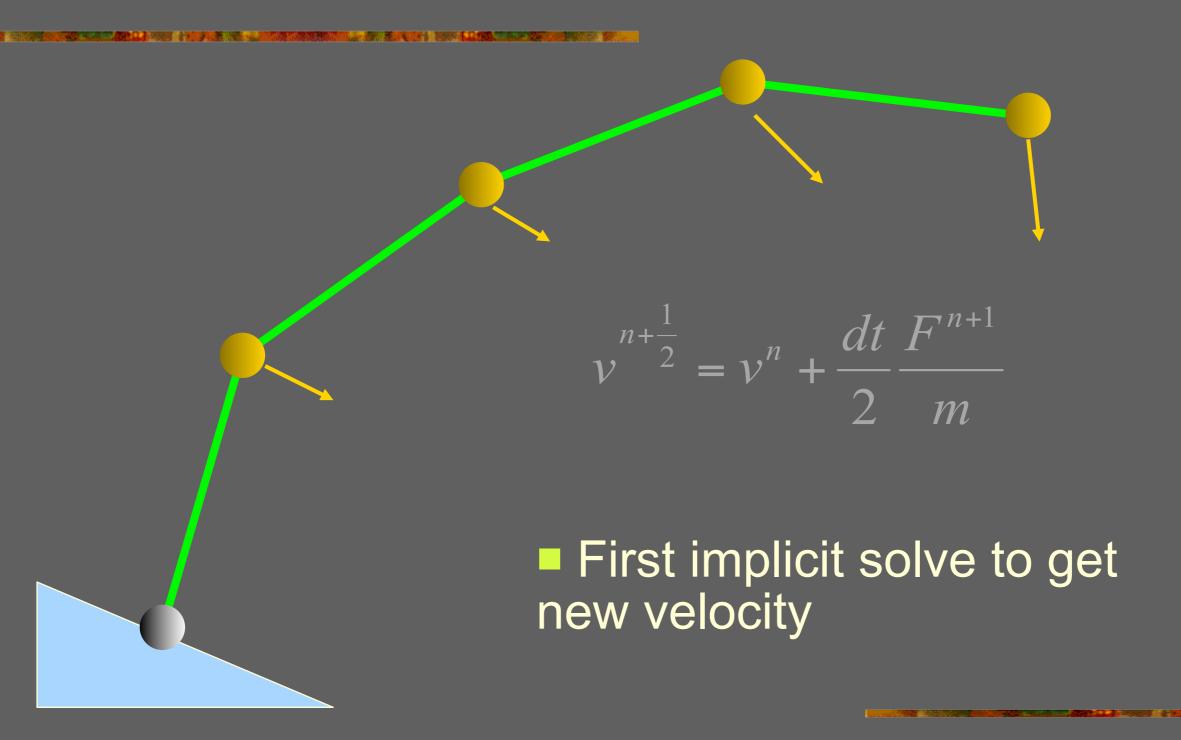
Is infinity!



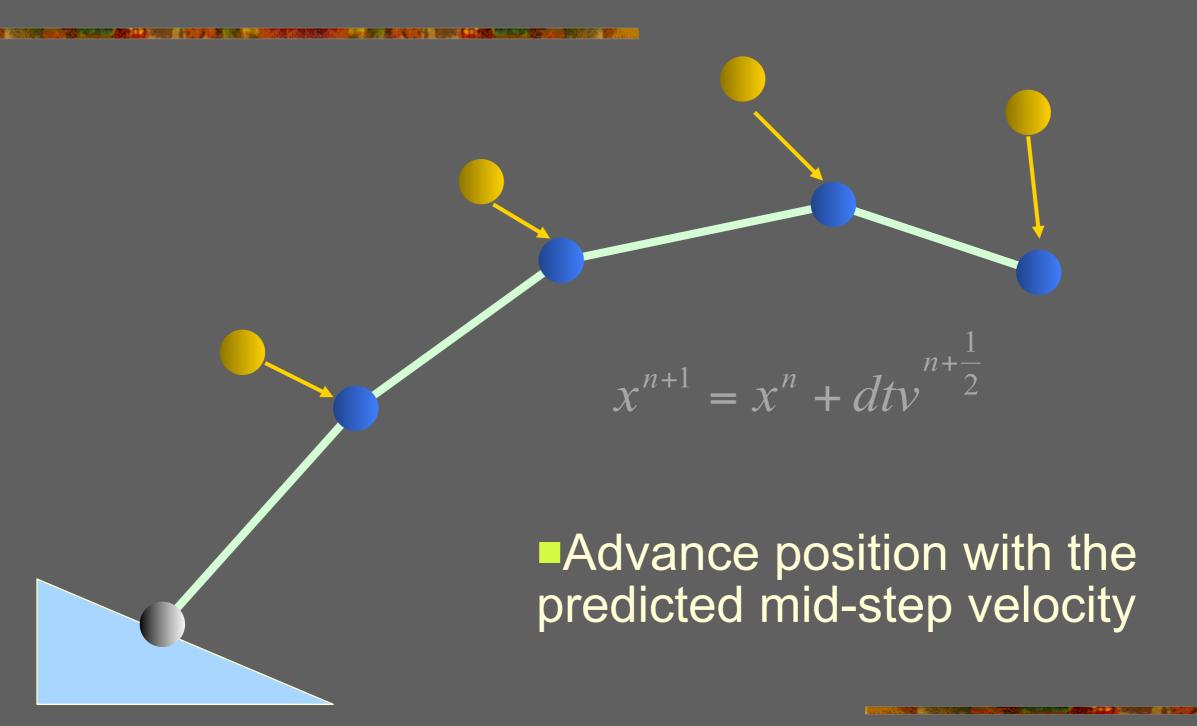
$$x^{n+1} = x^n + dtv^{n+1}$$

- Well, how do we preserve length then?
- → use non-linear correction

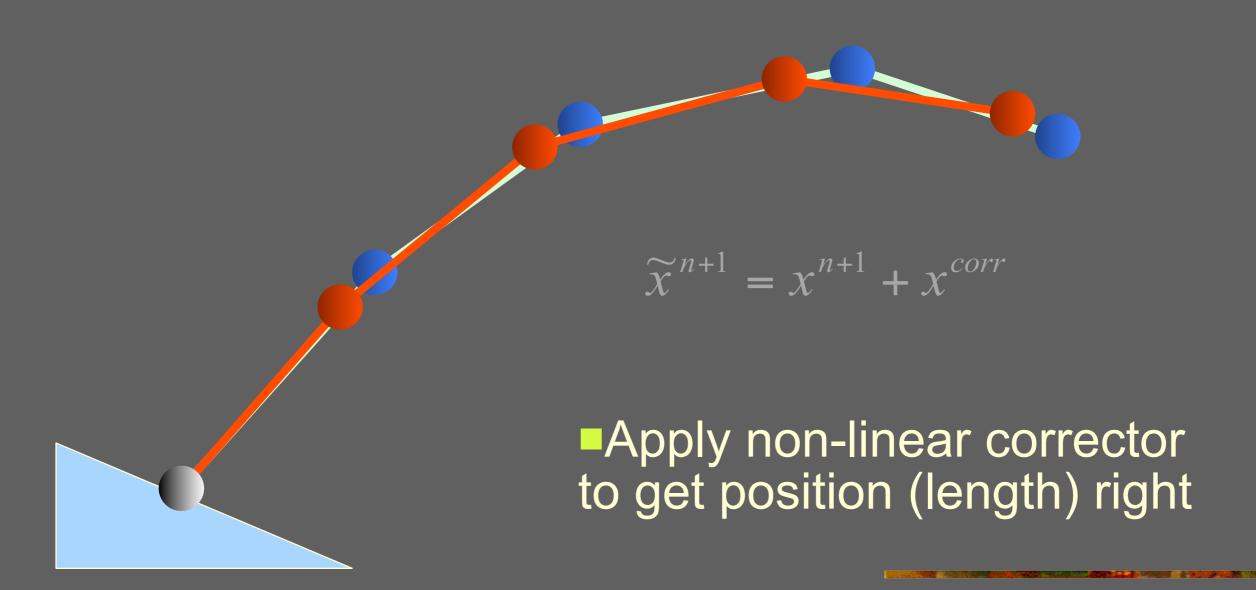
1. First pass-implicit integration



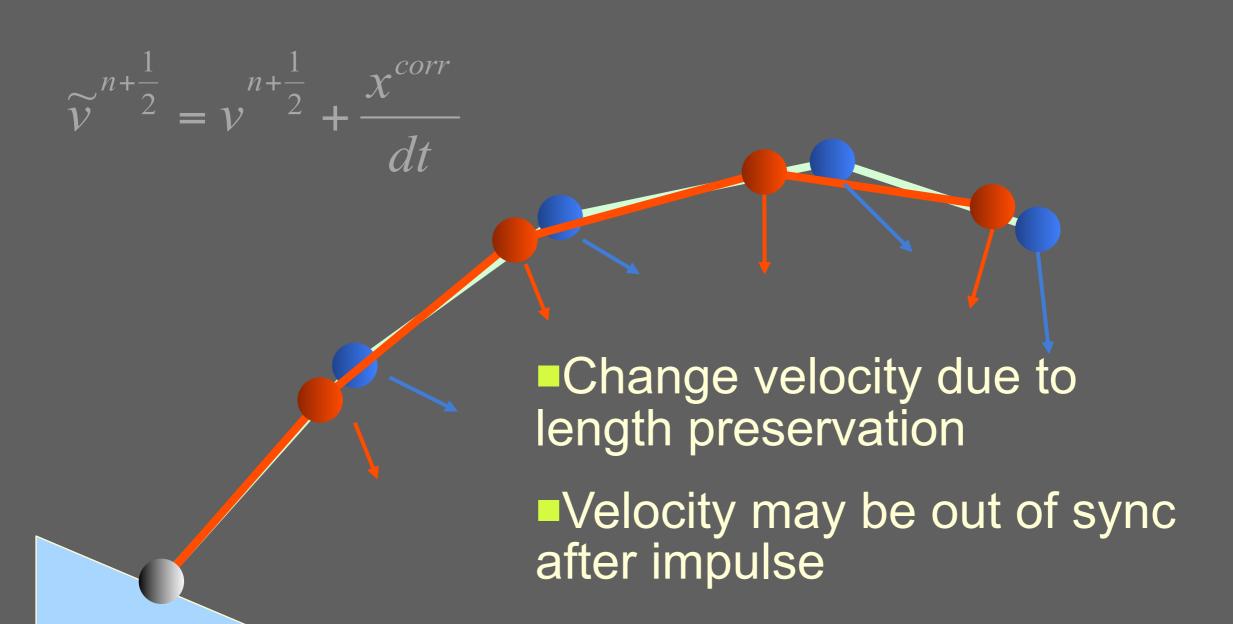
2. First pass-implicit integration



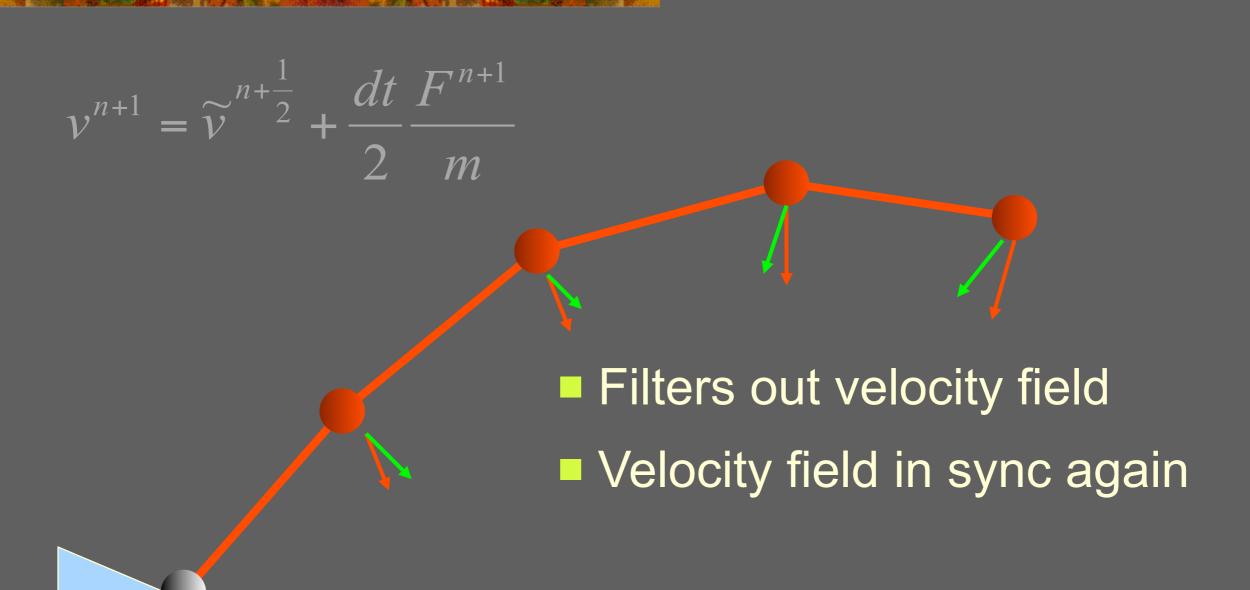
3. Non-linear Correction

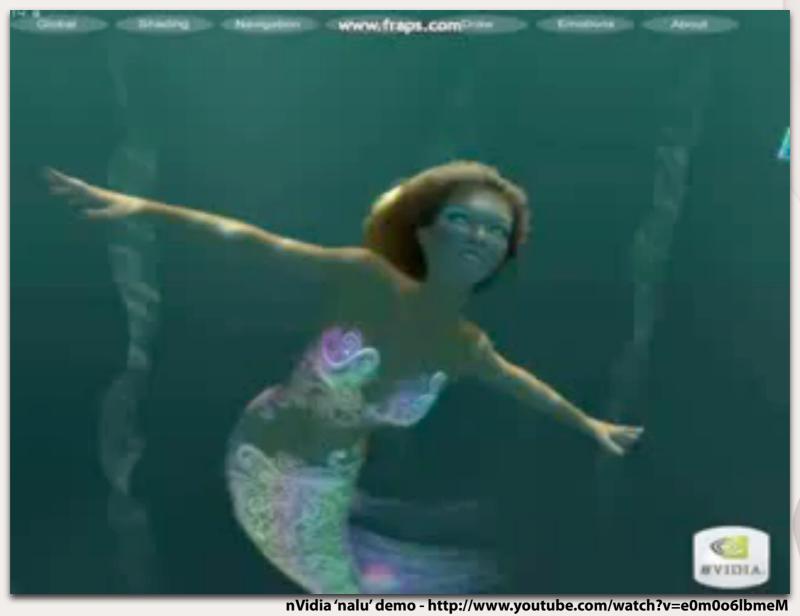


4.Impulse



5. Second implicit integration



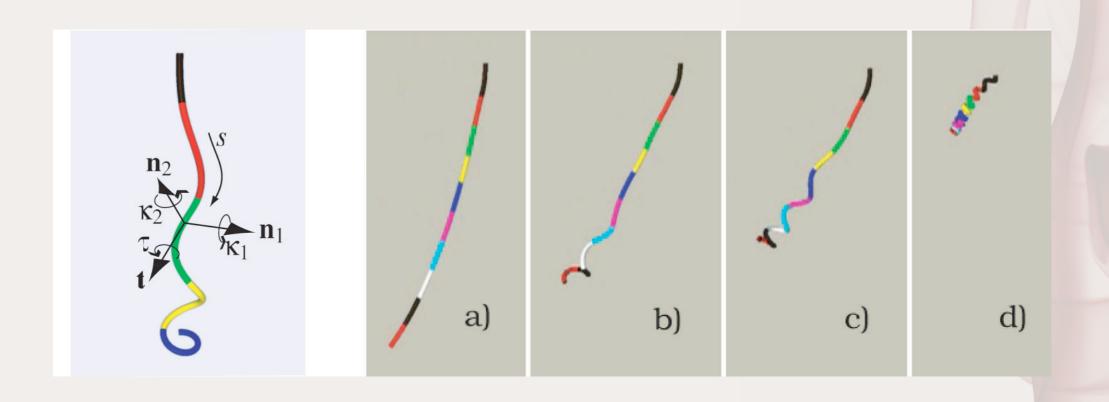


Problems

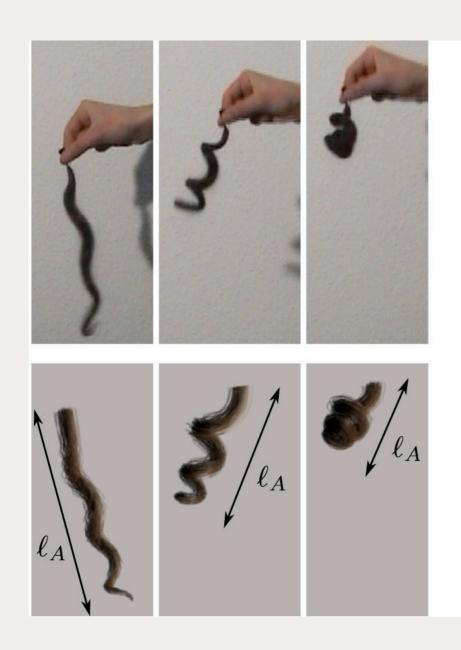
The linear spring model is very simple but has several problems:

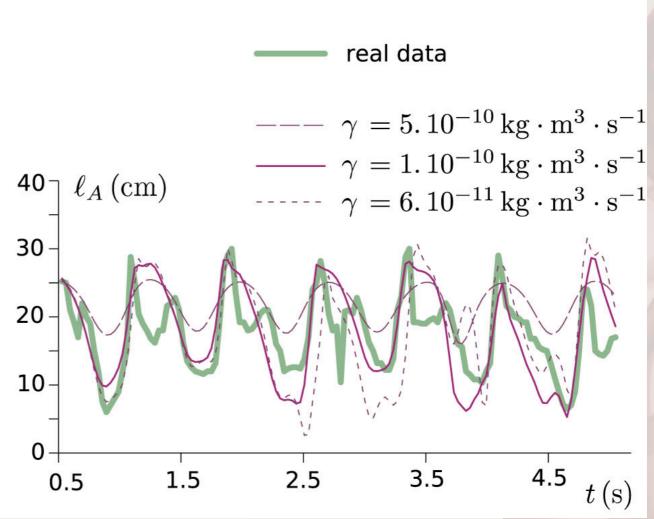
- Not length preserving.
- No torsion forces (twist).

Why just use straight rods?



$$\mathbb{M}[s,\mathbf{q}]\cdot\ddot{\mathbf{q}}+\mathbb{K}\cdot(\mathbf{q}-\mathbf{q}^n)=\mathbf{A}[t,\mathbf{q},\dot{\mathbf{q}}]+\int_0^L\mathbf{J}_{iQ}[s,\mathbf{q},t]\cdot\mathbf{F}^i(s,t)\,\mathrm{d}s.$$

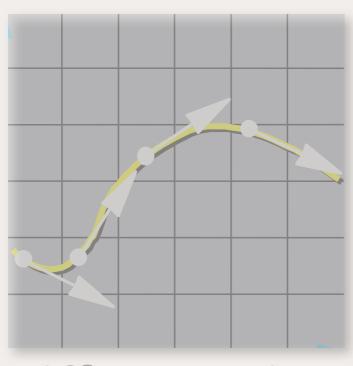




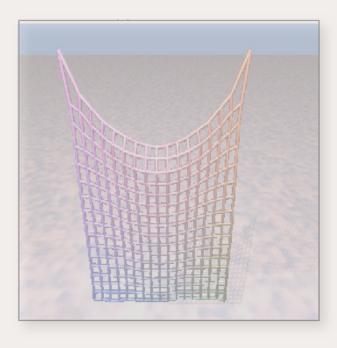
Part 3

Animation of a full head of hair

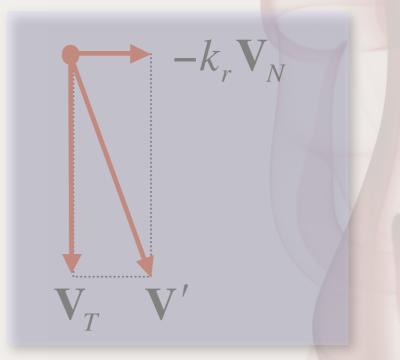
Overview



DiffEQ Review



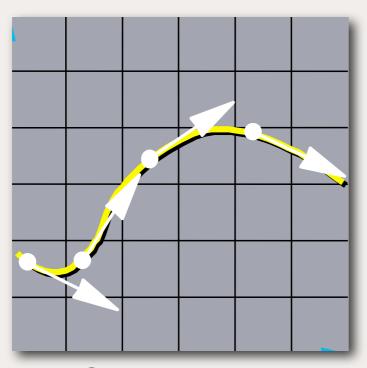
Cloth



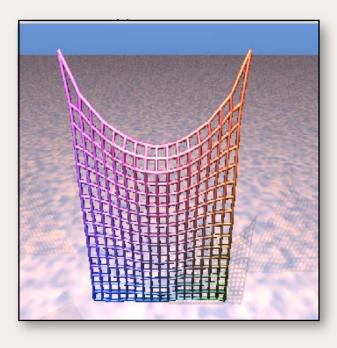
Particle Dynamics

Hair

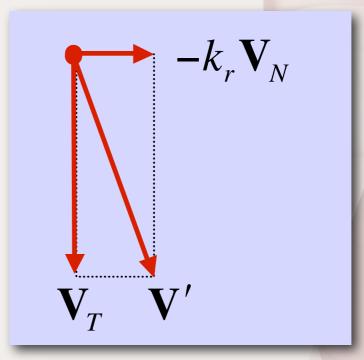
Overview



DiffEQ Review



Cloth



Particle Dynamics

Hair