Animation, Motion Capture, Keyframing
(oh and a little Radiosity)

Adrien Treuille
Overview

Announcements Radiosity Animation Intro Cell Animation

Keyframing Data-driven Animation Physical Simulation
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
Project 2 Graded
Project 3

Please start the Raytracer!!!
Project 3 & 4 Grading

Project 3
- Requirement A
- Requirement B
- Requirement C

Project 4
- Requirement A
- Requirement B
- Requirement C
- Requirement D
- Requirement E
- Requirement F

50% BACK
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
Classical Radiosity in a Nutshell, Revised

- Divide all surfaces into patches.
- Calculate form factors between all patches.
 - Lighting and viewer independent
- Solve the radiosity equation.
 - Viewer independent
- Render using standard 3D hardware.
Linear System

\[B_i = E_i + R_i \sum_j B_j F_{ij} \]

Our new equation gives the radiosity \((B)\) of a single patch, so to specify the radiosity of all \(n\) patches we need \(n\) radiosity equations, one for each patch.

Known values:
- \(E\) (given), \(R\) (given), \(F\) (computable)

Unknown: \(B\)

\(n\) equations, \(n\) unknowns
Restate as a matrix equation...and solve

\[
\begin{bmatrix}
1 - R_1 F_{11} & - R_1 F_{12} & \cdots & R_1 F_{1n} \\
- R_2 F_{21} & 1 - R_2 F_{22} & \cdots & R_2 F_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
- R_n F_{n1} & R_n F_{n2} & \cdots & 1 - R_n F_{nn}
\end{bmatrix}
\begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_n
\end{bmatrix}
=
\begin{bmatrix}
E_1 \\
E_2 \\
\vdots \\
E_n
\end{bmatrix}
\]

Each of our *n* linear equations contains *n*
double integrals, one for each form factor.
The Radiosity “Pipeline”

Input Scene Geometry

Meshing (division into patches)

Form Factor Calculations

Input Reflectance/Emission Factors

Solve Radiosity Equation

Texture Geometry with Radiosity Solution
Problems

• Blocky (Aliasing)
 ➟ More Patches
 ➟ Adaptive Subdivision

• No Specular Effects
 ➟ 2-pass Algorithms
Problems

- Blocky (Aliasing)
 ➟ Adaptive Subdivision

- No Specular Effects
 ➟ 2-pass Algorithms
Patch Size

Wireframe

300

1200

2500

2500 (interpolated)

100 (interpolated, supersampled)
Adaptive Subdivision

Subdivide elements adaptively:

Begin with elements identical to patches.
Determine radiosity of an element, then compare to neighbors to obtain an error value. If within some error threshold, assign constant radiosity (or optionally interpolate).
Otherwise, subdivide the element and recurse until the error threshold or a minimum element size is reached.
Adaptive Subdivision Examples

http://www.acm.org/jgt/papers/TeleaVanOverveld97/
Problems

• Blocky (Aliasing)
 ➟ Adaptive Subdivision

• No Specular Effects
 ➟ 2-pass Algorithms
Problems

- Blocky (Aliasing)
 ➟ Adaptive Subdivision

- No Specular Effects
 ➟ 2-pass Algorithms
Radiosity vs. Raytracing

Radiosity

Raytracing
Can we inject specular effects into radiosity?
2-pass Algorithms

1st Pass: Radiosity

2nd Pass: Raytracing (using Radiosity result)

Result

http://www.cg.tuwien.ac.at/research/rendering/rays-radio/
Example

D. Lischinski
Problems

- Blocky (Aliasing) ➟ Adaptive Subdivision
- No Specular Effects ➟ 2-pass Algorithms
Problems

- Blocky (Aliasing) ➟ Adaptive Subdivision
- No Specular Effects ➟ 2-pass Algorithms
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
What is animation?

Animation = Graphics × Time
Keyframing

Figure 10.9 Inbetweening with nonlinear interpolation. Nonlinear interpolation can create equally spaced inbetween frames along curved paths. The ball still moves at a constant speed. (Note that the three keyframes used here and in Fig. 10.10 are the same as in Fig. 10.4.)
Data-driven Animation
Physics-based Animation

FLOW
100% Full CG Water from R&D to Final
What do you need to know?

• **No project** on this material.

• **No need** to memorize the mathematics in this lecture.

• **Need** to understand the basic ideas.

• **Need** to understand mathematics of subsequent lectures:

 • PDEs / Particle Systems
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
Overview

Announcements
Radiosity
Animation Intro
Cell Animation

Keyframing
Data-driven Animation
Physical Simulation
Traditional Cel Animation

• Each frame is drawn by hand

• Film runs at 24 frames per second (fps)
 – That’s 1440 pictures to draw per minute

• Artistic issues:
 – Artistic vision has to be converted into a sequence of still frames
 – Not enough to get the stills right--must look right at full speed
 » Hard to “see” the motion given the stills
 » Hard to “see” the motion at the wrong frame rate
Traditional Animation: The Process

• Key Frames
 – Draw a few important frames in pencil
 » beginning of jump, end of jump and a frame in the air

• Inbetweens
 – Draw the rest of the frames

• Painting
 – Redraw onto clear sheet of plastic called a cel, color them in

- Use one layer for background, one for object
 - Draw each separately
 - Stack them together on a copy stand
 - Transfer onto film by taking a photograph of the stack

- Can have multiple animators working simultaneously on different layers, avoid re-drawing and flickering
Example
Principles of Traditional Animation
[Lasseter, SIGGRAPH 1987]

• Stylistic conventions followed by Disney’s animators and others

• From experience built up over many years
 – Squash and stretch -- use distortions to convey flexibility
 – Timing -- speed conveys mass, personality
 – Anticipation -- prepare the audience for an action
 – Followthrough and overlapping action -- continuity with next action
 – Slow in and out -- speed of transitions conveys subtleties
 – Arcs -- motion is usually curved
 – Exaggeration -- emphasize emotional content
 – Secondary Action -- motion occurring as a consequence
 – Appeal -- audience must enjoy watching it
Squash and Stretch
Use distortions to convey flexibility
Principles of Traditional Animation

SQUASHED & STRETCHED & TWISTED

DEJECTED Joy TANTRUM CURIOUS

COCKY LAUGHTER BELLIGERENT MORE LAUGHTER

The famous half-filled flour sack, guide to maintaining volume in any animatable shape, and proof that attitudes can be achieved with the simplest of shapes.

HAPPY
Squash and Stretch
Use distortions to convey flexibility

Defines the rigidity of the material

Gives the sense that the object is made out of a soft, pliable material.

Elongating the drawings before and after the bounce increases the sense of speed, makes it easier to follow and gives more snap to the action.
The ball on the left moves at a constant speed with no squash/stretch. The ball in the center does slow in and out with a squash/stretch. The ball on the right moves at a constant speed with squash/stretch.
Timing & Motion

Speed conveys mass, personality

A heavier object takes a greater force and a longer time to accelerate and decelerate.

A larger object moves more slowly than a smaller object and has greater inertia.

Motion also can give the illusion of weight.
For example, consider a ball hitting a box.

http://www.siggraph.org/education/materials/HyperGraph/animation/character-animation/principles/timing.htm
Anticipation

Prepare the audience for an action

Don’t surprise the audience
Direct their attention to what’s important
Follow Through and Overlapping Action

The termination of an action and establishing its relationship to the next action

Audience likes to see resolution of action
Discontinuities are unsettling
Secondary Action

Motion occurring as a consequence
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
Keyframing Basics

Figure 10.5 Inbetweening with linear interpolation. Linear interpolation creates inbetween frames at equal intervals along straight lines. The ball moves at a constant speed. Ticks indicate the locations of inbetween frames at regular time intervals (determined by the number of frames per second chosen by the user).
How Do You Interpolate Between Keys?

AUTO

MANUAL

SPLIT

\[y'_{i-1} \]

\[y_{i-1} \]

\[t_{i-1} \]

\[y_{i} \]

\[t_{i} \]

\[y'_{i} \]

\[y'_{i+1} \]

\[t_{i+1} \]

\[y_{i+1} \]

\[y_{i+1} \]

\[(y_{i+1} - y_{i-1})/(t_{i+1} - t_{i-1}) \]

keyframe i-1

keyframe i

keyframe i+1

spline(i-1,i)

spline(i,i+1)

spline(i,i+1)
Keyframing Basics

Figure 10.9 Inbetweening with nonlinear interpolation. Nonlinear interpolation can create equally spaced inbetween frames along curved paths. The ball still moves at a constant speed. (Note that the three keyframes used here and in Fig. 10.10 are the same as in Fig. 10.4.)
Keyframing Basics

Figure 10.10 Inbetweening with nonlinear interpolation and easing. The ball changes speed as it approaches and leaves keyframes, so the dots indicating calculations made at equal time intervals are no longer equidistant along the path.
Keyframe basics

• For each variable, specify its value at the “important” frames. Not all variables need agree about which frames are important.

• Hence, key values rather than key frames.

• Create path for each parameter by interpolating key values.
Problems with Interpolation

• Splines don’t always do the right thing
• Classic problems
 – Important constraints may break between keyframes
 › feet sink through the floor
 › hands pass through walls
 – 3D rotations
 › Euler angles don’t always interpolate in a natural way
• Classic solutions:
 – More keyframes!
 – Quaternions help fix rotation problems
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
Overview

Announcements
Radiosity
Animation Intro
Cell Animation
Keyframing
Data-driven Animation
Physical Simulation
Data-Driven Animation

• *Capturing* the data or effect we want to animate.

• The classic example is *humans*.

source: http://www.3eop.com/data/3d/images/08_05_26_anatomy_study_male.jpg
Humans

- Body models.
- Animation
Body Representation

How to represent a human body on a computer?
Body Representation

- Kinematic Skeleton

source: https://buffy.eecs.berkeley.edu/PHP/resabs/resabs.php?f_year=2005&f_submit=advgrp&f_advid=10917651
Body Representation

- Kinematic Skeleton
- Anatomical

source: http://physbam.stanford.edu/~fedkiw/
Body Representation

- Kinematic Skeleton
- Anatomical
- Pure Mesh

source: http://people.csail.mit.edu/sumner/research/meshik/
Body Representation

- Kinematic Skeleton
- Anatomical
- Pure Mesh
- What are the advantages and disadvantages?
Body Representation

- **Kinematic Skeleton**
- Anatomical
- Pure Mesh
- What are the advantages and disadvantages?
\[\omega_0 = [x_0, \theta_0] \in \mathbb{R}^6 \]

\[\omega_i = f_i, \Omega(\omega_{i-1}) \]

Ω is the vector of internal joint angles, i.e. shoulders, hips, etc.
Motion Capture

- Attach markers to a human body.
- Calibrate a skeleton which makes those markers “make sense.”
- Cameras capture 2D markers positions.
- Estimate 3D marker positions.
- **Inverse kinematics**: convert marker positions to skeleton...

- How?
Marker Energy Function

\[\omega_i = f_{i, \Omega}(\omega_{i-1}) \]

\[\hat{m}_j = \tau_i(\omega_i)m_j \]

\[E = \sum_j \|\hat{m}_j^* - \hat{m}_j\|^2 \]

\[\frac{dE}{d\Omega} \]
Derivatives

\[\omega_i = f_{i,\Omega}(\omega_{i-1}) \]

\[\frac{dE}{d\Omega} = 2 \sum_j (\hat{m}_j^* - \hat{m}_j)^T \frac{d\hat{m}_j}{d\Omega} \]

\[\frac{d\hat{m}_j}{d\Omega} = \frac{\partial \hat{m}_j}{\partial \omega_i} \left(\frac{\partial \omega_i}{\partial \Omega} + \frac{\partial \omega_{i-1}}{\partial \Omega} \frac{\partial \omega_i}{\partial \omega_{i-1}} - \frac{\partial \omega_{i-1}}{\partial \omega_{i-2}} \frac{\partial \omega_i}{\partial \omega_{i-2}} \frac{\partial \omega_{i-1}}{\partial \Omega} + \cdots \right) \]
Inverse Kinematics Summary

- Telescoping composition of functions from root.
- Compute derivatives in the opposite direction!
Body Representation

- Kinematic Skeleton
- Anatomical
- Pure Mesh
- What are the advantages and disadvantages?
Body Representation

- Kinematic Skeleton
- Anatomical
- **Pure Mesh**
- What are the advantages and disadvantages?
Laser Range Scanning
Dense Marker Capture

Capturing and Animating Skin Deformation

Robotics Institute, Carnegie Mellon University
Uncanny Valley
Uncanny Valley

http://www.youtube.com/watch?v=9YaTUQaRCh4
Bodies

- Body models.
- Animation

source: 3dscience.com
Bodies

- Body models.
- Animation
Motion Capture

- Telescoping composition of functions from root.
- Compute derivatives in the *opposite* direction!
Clips

source: Treuille et al. [2002]

source: Kovar et al. [2002]
Sequences

source: Treuille et al. [2002]

source: Kovar et al. [2002]

How?
How can we define a metric on poses?

Pairwise pose differences.
Pairwise Pose Differences

Motion Graph Schematic
Results

source: Kovar et al. [2002]
Constraints

- Pose blending may violate physical constraints
- Linear Momentum Conservation
- Angular Momentum Conservation
- Frictional Constraints ("Foot Skate")
“Foot Skate” Problem

source: http://www.cs.wisc.edu/graphics/Gallery/kovalvol/Cleanup/
Inverse Kinematic Solution

\[\omega_i = f_{i, \Omega}(\omega_{i-1}) \]

\[\frac{dE}{d\Omega} = 2 \sum_j \left(\hat{m}_j^* - \hat{m}_j \right)^T \frac{d\hat{m}_j}{d\Omega} \]

\[\frac{d\hat{m}_j}{d\Omega} = \frac{\partial\hat{m}_j}{\partial\omega_i} \left(\frac{\partial\omega_i}{\partial\Omega} + \frac{\partial\omega_i}{\partial\omega_{i-1}} \frac{\partial\omega_{i-1}}{\partial\Omega} + \frac{\partial\omega_i}{\partial\omega_{i-1}} \frac{\partial\omega_{i-1}}{\partial\omega_{i-2}} \frac{\partial\omega_{i-2}}{\partial\Omega} + \cdots \right) \]
IK Results

source: http://www.cs.wisc.edu/graphics/Gallery/kovar.vol/Cleanup/
Smart Blending

In Phase

Out Phase

Constraint frames: A_{in}, A_{out}, C_{in}, C_{out}, E_{in}, E_{out}, B_{in}, B_{out}, D_{in}, D_{out}

Time

Blend

Constraint 1

Constraint 2

(a) (b) (c) (d) (e)

One Walkcycle

Figure 2
Smart Blending Example

source: Treuille et al. [2002]
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
Overview

Announcements

Radiosity

Animation Intro

Cell Animation

Keyframing

Data-driven Animation

Physical Simulation
Examples

Efficient Synthesis of Physically Valid Human Motion

Anthony C. Fang Nancy S. Pollard

Computer Science Department
Brown University
Bird Flight

These DOFs (articulations) create a mo-hn as o-v parameters a-d direction of the arm spread, while the wingbeat is generated by the bird’-s spread, at the wing 1eak angle. Simply using the wingbeat and tail twist, we can synchronize the feather. Using wingbeat and tail twist, we can synchronize the feather.

Angular translational twist around the 2, angular translational twist around the 2, and angular translational twist around the 2, while wingbeat and tail twist, we can synchronize the feather. Using wingbeat and tail twist, we can synchronize the feather.

Currently, we use the wingbeat and tail twist, we can synchronize the feather. Using wingbeat and tail twist, we can synchronize the feather.

The controller is manipulated to minimize, as each wing moves. The results are synchronized, and we achieve the desired state.

Published 2003.

Source: Wu and Popović [2003]
Bird Flight Examples

Eagle - Full flight path
Overview

Announcements
Radiosity
Animation Intro
Cell Animation
Keyframing
Data-driven Animation
Physical Simulation
Overview

Announcements
Radiosity
Animation Intro
Cell Animation

Keyframing
Data-driven Animation
Physical Simulation