
15-462: Computer Graphics
Ilya Gershgorin

 Subdivision

 What is it?

 What properties does it have / do we want?

 What kinds of algorithms exist and what
advantages do they have?

 Project 2

 Texture mapping crash course

 Loop subdivision algorithm

 Start with a given polygon mesh
 Apply refinement scheme to get an

increasingly smooth surface by taking in the
mesh and subdividing it to create new
vertices and faces

 The limit of this subdivision is a smooth
surface, though in practice we can’t apply it
this many times
 Caveat – provided we don’t define creases and

boundaries

 Efficiency

 use a small number of floating point operations

 Local definition

 don’t look very far away from current point

 Simplicity

 We probably do not want a ton of rules

 Continuity

 What kind of properties can we prove about the
resulting surface?

 Efficiency & Local Definition

 Subdivision is efficient because only several
neighboring points are used in the computation of
new points

 By contrast, rendering a surface defined by an
implicit equation is expensive, requiring an
algorithm such as marching cubes

 Ordinary vertices
 For triangular meshes, vertices of valence 6 on the

interior and valence 4 on the boundaries
 For quadrilateral meshes, vertices of valence 4 on the

interior and valence 3 on the boundaries
 Extraordinary vertices
 All other valences

 Odd and even vertices
 Odd vertices are those that are added on the current

step of the subdivision
 Even vertices are those that are inherited from the

previous level

 In general, there is a fairly straightforward
way to classify the subdivision schemes that
exist

 Type of refinement – face split or vertex split

 Type of generated mesh – triangular or
quadrilateral

 Approximating vs. interpolating

 Smoothness of the limit surface for regular
meshes

 Face split vs. Vertex split

 Approximation vs. Interpolation

 Interpolation – original points remain the same

 Approximation – original points not the same

 Face splitting can be either since the vertices of
the coarser tiling are also vertices in the refined
tiling

 Approximating generally produces smoother
surfaces

Face Split

Triangular meshes Quadrilateral Meshes

Approximating Loop (C2) Catmull-Clark (C2)

Interpolating Modified Butterfly (C1) Kobbelt (C1)

Vertex Split

Doo-Sabin, Midedge (C1)

Biquartic (C2)

 Face splitting, approximating scheme for
triangular meshes proposed by Charles Loop.

 C1 continuity for all valences and C2 continuity
over regular meshes

 Can be applied to polygon meshes after
triangulating the mesh

 Computing Tangents
 Interior

 Boundary

 Computing the normal at that point is then just
t1 x t2.

 First proposed by Dyn, Gregory and Levin, but was not C1

continuous
 A modified scheme was later proposed that produced C1

continuous meshes for arbitrary surfaces
 Interpolating scheme applied to triangular meshes

 For a regular vertices, imagine arranging the
control points into a vector
p = [p0 , p0,1 , p1,1 , … , p5,1 , p0,2 , p1,2 ,…, p5,3]
of length 19, then the tangents are given as
follows

 Otherwise, the same tangent rules as the
Loop scheme are applied.

 Boundary rules are much more complicated in the butterfly scheme
because the stencil is much bigger.

 We can break them into groups based on the two points on the edge
where the point is being added.

 Face splitting, approximating scheme on quadrilaterals
 Produces surfaces that are C2 everywhere except

extraordinary vertices where they are C1

 Face splitting, interpolating scheme on quadrilateral meshes
 C1 continuous for all valences

 Doo-Sabin, Midedge (C
1
)

 Biquartic (C
2
)

 Theses are vertex splitting algorithms.

 You will have 2 tasks in project 2.

 Texture map a mesh given the texture and the
texture coordinates

 Implement the loop subdivision algorithm

 All initial positions, normals, texture
coordinates and whether or not this
particular mesh needs to be texture are given
to you.

 A texture is just a bitmap image
 Our image is a 2D array:

texture[height][width][4]
 Pixels of the texture are called texels
 Texel coordinates are in 2D, in the range [0,1]

 OpenGL uses (s, t) as the coordinate parameters.

 Commonly referred to as (u, v) coordinates by
most graphics programs.

 In order to map a 2D image to a piece of
geometry, we consider two functions:

 A mapping function which takes 3D points to
(u, v) coordinates.

 f(x, y, z) returns (u, v)

 A sampling/lookup function which takes (u, v)
coordinates and returns a color.

 g(u, v) returns (r, g, b, a)

 The basic idea is that for some polygon
(which may have arbitrary shape and size),
we manually assign each of its vertices (u, v)
coordinates in the range from [0, 1].

 We then use these (u, v) coordinates as rough
indices into our texture array

 These don’t necessarily hit into the array so some
sort of interpolation is generally used

 Initialization
 Enable GL texture mapping
 Specify texture
 Read image from file into array in memory or

generate image using the program (procedural
generation)

 Specify any parameters
 Define and activate the texture

 Draw
 Draw objects and assign texture coordinates to

vertices

 Color blending
 How to determine the color of the final pixel?

▪ GL_REPLACE – use texture color to replace object color
▪ GL_BLEND – linear combination of texture and object color
▪ GL_MODULATE – multiply texture and object color

 Example:
▪ glTexEnvf(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_REPLACE);

 Texture Coordinates outside [0,1] Two choices:
 Repeat pattern (GL_REPEAT)
 Clamp to maximum/minimum value (GL_CLAMP)
 Example:

▪ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP)

▪ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP)

repeat clamp

// somewhere else...
Gluinttexture_id;

void init(){
// acquire load our texture into an array
// the function we use this semester is in imageio.hpp
char* pointer; // TODO: give me some values!

// enable textures
glEnable(GL_TEXTURE_2D);
glGenTextures(1, &texture_id);
glBindTexture(GL_TEXTURE_2D, texture_id);

// sample: specify texture parameters
glTexParameteri(GL_TEXUTRE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

// set the active texture
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 256, 256, 0, GL_RGBA,
GL_UNSIGNED_BYTE, pointer);

}

 Use GLTexCoord2f(s,t) to specify texture coordinates
 Example:

glEnable(GL_TEXTURE_2D)

glBegin(GL_QUADS);

glTexCoord2f(0.0,0.0); glVertex3f(0.0,0.0,0.0);

glTexCoord2f(0.0,1.0); glVertex3f(2.0,10.0,0.0);

glTexCoord2f(1.0,0.0); glVertex3f(10.0,0.0,0.0);

glTexCoord2f(1.0,1.0); glVertex3f(12.0,10.0,0.0);

glEnd();

glDisable(GL_TEXTURE_2D)

 State machine: Texture coordinates remain valid until you
change them or exit texture mode via
glDisable (GL_TEXTURE_2D)

 We provide you with the initial positions,
normals and texture coordinates in this lab.

 Your job is to implement the loop subdivision
algorithm and output a subdivided mesh.

 You can use the same algorithm for the
position, normals and the texture
coordinates.

 Essentially requires 2 passes

 First pass, handle creating odd vertices

 Second pass, move even vertices

 Suggested path

 Implement the interior cases first

▪ This will allow you to test this on closed meshes before
moving on to the ones with boundaries

 Implement the boundary cases

 Subdivision

 What is it?

 What properties does it have / do we want?

 What kinds of algorithms exist and what
advantages do they have?

 Project 2

 Texture mapping crash course

 Loop subdivision algorithm

http://www.mrl.nyu.edu/~dzorin/sig00course/

http://www.mrl.nyu.edu/~dzorin/sig00course/

