Arbitrary 3D rotations slide #8

We wish to rotate about an arbitrary vector a to form a new basis \(\mathbf{u, v, w} \) with \(\mathbf{w} = \mathbf{a} \).

1. Rotate that basis to the world coordinates \(\mathbf{x, y, z} \).
2. Rotate by \(\theta \) about the \(z \) axis.
3. Rotate back to the \(\mathbf{u, v, w} \) basis.

\[
\begin{bmatrix}
 x_u & x_v & x_w \\
 y_u & y_v & y_w \\
 z_u & z_v & z_w
\end{bmatrix}
= \begin{bmatrix}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x_u & y_u & z_u \\
 x_v & y_v & z_v \\
 x_w & y_w & z_w
\end{bmatrix}
\]

Remember:

\[
R^T = R^{-1}
\]

\(\mathbf{w} \) is aligned with \(\mathbf{a} \).

Where did \(\mathbf{u, v} \) come from?

\[\mathbf{w} = \frac{\mathbf{a}}{||\mathbf{a}||}\]

Addition: \(\mathbf{t} \) that is not co-linear with \(\mathbf{w} \)

\[\mathbf{t} = \mathbf{w} + \text{change smallest magnitude component to } 1\]

\[\mathbf{w} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right) \Rightarrow \mathbf{t} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 1 \right)\]

\[\mathbf{u} = \frac{\mathbf{t} \times \mathbf{w}}{||\mathbf{t} \times \mathbf{w}||}, \quad \mathbf{v} = \mathbf{w} \times \mathbf{u}\]
Arbitrary 3D rotations: Slide # 8

I wish to rotate about an arbitrary vector a

form a new basis \(u \) \(v \) \(w \) with \(w = a \)

rotate that basis to the world coordinate

\(x, y, z \)

rotate by \(\theta \) about the \(z \) axis

rotate back to the \(u, v, w \) basis

\[
\begin{bmatrix}
x_u & x_v & x_w \\
y_u & y_v & y_w \\
z_u & z_v & z_w
\end{bmatrix}
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_u & y_u & z_u \\
x_v & y_v & z_v \\
x_w & y_w & z_w
\end{bmatrix}
\]

\[R^T_{uvw} \]

remember:

\[R^T = R^{-1}\]

\(w\) is aligned with \(a\)

where did \(v, v\) come from?

\[w = \frac{a}{||a||}\]

\[t = w + \text{change smallest magnitude component to } 1\]

\[u = (x_2, -\frac{x_1}{||x_2||}, 0) \Rightarrow t = (\frac{x_2}{||x_2||}, -\frac{x_1}{||x_2||}, 1)\]

\[a = \frac{tx_w}{||tx_w||} \quad v = a \times u\]
Canonical View Volume

-1 < x < 1
-1 < y < 1
-1 < z < 1

cube is all x, y, z points \(\mathbb{R}^3 \)

screen is \(n_x \times n_y \) pixels

\[n_x \text{ might not equal } n_y \text{ in general} \]

\[
\begin{bmatrix}
\text{X canonical} \\
\text{Y canonical} \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{n_x}{2} & 0 & \frac{n_x-1}{2} \\
0 & \frac{n_y}{2} & \frac{n_y-1}{2} \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\text{X pixel} \\
\text{Y pixel} \\
1
\end{bmatrix}
\]

\[X_{pixel} = \frac{n_x}{2} x + \frac{n_x-1}{2} \]

\[
\begin{align*}
x = 0 & \Rightarrow \frac{n_x-1}{2} \\
x = -1 & \Rightarrow -n_x + \frac{n_x-1}{2} = \frac{n_x}{2} - \frac{1}{2} \\
x = 1 & \Rightarrow \frac{n_x + n_x-1}{2} = n_x - \frac{1}{2}
\end{align*}
\]

could also carry z along for z buffering
Orthographic Projection

- take 3D line with endpoints \(a \) \& \(b \)
- use matrix \(M \) to take these points
 to \(Ma, Mb \) in the canonical view volume

Viewer is looking along the minus \(z \) axis with
\(y \) axis pointing up (right hand coordinate system)

Needs a transform to take

\[
\begin{align*}
y &= b \Rightarrow y = 1 \\
y &= t \Rightarrow y = 1 \\
x &= l \Rightarrow x = -1 \\
x &= r \Rightarrow x = 1 \\
z &= n \Rightarrow z = 1 \\
z &= f \Rightarrow z = -1
\end{align*}
\]

\(f \) is more negative than \(n \)
(confusing - caused by looking down negative \(z \) axis)

What operation will do this for us?
move + scale \& more intuitive
or
scale + more
Now have points in canonical view volume
Add in generalization of previous equation = canonical view volume

Combine 3 matrices to get

\[
\begin{bmatrix}
X_{\text{pixel}} \\
Y_{\text{pixel}} \\
Z_{\text{canonical}}
\end{bmatrix}
= M_0
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
\]

\(Z \) is now \([-1, 1]\)
ignored for projection
used for \(Z \) buffer.

For each line segment \((a, b)\)
\(p = M_0a; \)
\(q = M_0b; \)
Draw line \((x_p, y_p, x_q, y_q)\)
Arbitrary View Positions

eye position e (center of eye/lens)

screen direction s

view-up vector t (bisection camera/head +
points up)

\[w = -\frac{s}{\|s\|} \]

\[u = \frac{t \times w}{\|t \times w\|} \]

\[v = w \times u \]

remember: cross product is

3D vector \(-1\) to same orig. vector

\[\|a \times b\| = \|a\| \|b\| \sin \theta \]

What do we need to add to our pipeline?

a conversion from the coordinate system

\(x', y', z' \@ e \Rightarrow (u, v, w) \@ e \)

Both calls this canonical
we'll call it world

more \(e \Rightarrow o + \) align \(uvw \rightarrow xyz\)

\[M_r = \begin{bmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_e \\ 0 & 1 & 0 & -y_e \\ 0 & 0 & 1 & -z_e \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
compute \(M_r \)
compute \(M_0 \)
\[M = M_0 M_r \]
for each line segment \((a_i, b_i)\)
\[p = M a_i \]
\[q = M b_i \]
draw line \((x_p, y_p, x_q, y_q)\)
would like to add another matrix to our chain

but how to handle the divide by z?

$$y = \frac{\xi}{z} y'$$

trick: use that extra coordinate from last class (ω or h)

& let it take on values other than 1

$$\begin{bmatrix}
\xi x \\
\xi y \\
\xi z \\
\xi \eta
\end{bmatrix} \rightarrow \begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} \quad \text{by dividing by } \xi$$

perspective matrix:

$$M_p = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{c_2}{f} & -1
\end{bmatrix}$$

points $m/z = n$ plane are unchanged:

$$\frac{n (n+f)}{n+f} \rightarrow \frac{n+f}{n+f}$$

$z = \frac{z'}{n+f}$ homogenize $n+f$
$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ \frac{y}{z+n} \\ \frac{z}{z+n} \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} \frac{x}{z} \\ \frac{y}{z} \\ \frac{z}{z+n} \\ 1 \end{bmatrix}$$

Good properties:

- Pts on $z=n$ plane are unchanged
 - $z=1 \quad x, y, z$ unchanged

- Pts on $z=n$ plane
 - z unchanged, x, y squished appropriately

Both $n + z$ (inside the view volume) are negative so no clips in x, y

- Preserves relative z values (can be used for z buffer)

- Map lines \rightarrow lines
- Map planes \rightarrow planes
So we can multiply M by an arbitrary constant (it will get divided out later).

$$M_p = \begin{bmatrix}
 n & 0 & 0 & 0 \\
 0 & n & 0 & 0 \\
 0 & 0 & n + f & -fn \\
 0 & 0 & 1 & 0 \\
\end{bmatrix}$$

A more attractive version of M_p.

M_p^{-1} is also important — select in on screen. What is 2D mouse pointing to in 3D space

$$M_p^{-1} = \begin{bmatrix}
 \frac{1}{n} & 0 & 0 & 0 \\
 0 & \frac{1}{n + f} & 0 & 0 \\
 0 & 0 & \frac{1}{n + f} & 0 \\
 0 & 0 & 0 & \frac{1}{n + f} \\
\end{bmatrix}$$

Equivalently,

$$M_p^{-1} = \begin{bmatrix}
 \frac{1}{n} & 0 & 0 & 0 \\
 0 & \frac{1}{n + f} & 0 & 0 \\
 0 & 0 & \frac{1}{n + f} & 0 \\
 0 & 0 & 0 & \frac{1}{n + f} \\
\end{bmatrix}$$
\[M = M_o \quad M_p \quad M_v \]

\[\uparrow \quad \uparrow \quad \uparrow \]

- Take one point to origin
- squash + align
- oxw to x'y'z'

- Canonical view volume
- perspective

- Compute \(M_0 \)
- Compute \(M_v \)
- Compute \(M_p \)

\[M = M_o \quad M_p \quad M_v \]

For each line segment \((a_i, b_i)\) do

\[p = M a_i \]
\[q = M b_i \]

drawline \((qx, qy)\)