Image Processing
Overview

Images

Pixel Filters

Neighborhood Filters

Dithering
We can think of an image as a function, f,

$f: \mathbb{R}^2 \rightarrow \mathbb{R}$

- $f(x, y)$ gives the intensity at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:

 $f: [a,b] \times [c,d] \rightarrow [0,1]$

A color image is just three functions pasted together. We can write this as a “vector-valued” function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$
Image as a Function
Image Processing

• Define a new image g in terms of an existing image f
 – We can transform either the domain or the range of f
• Range transformation:

$$g(x, y) = t(f(x, y))$$

What kinds of operations can this perform?
Some operations preserve the range but change the domain of f:

$$g(x, y) = f(t_x(x, y), t_y(x, y))$$

What kinds of operations can this perform?

Still other operations operate on both the domain and the range of f.
Point Operations
Point Processing
Point Processing

Original

\[x \]

Darken

\[x - 128 \]

Lower Contrast

\[\frac{x}{2} \]

Nonlinear Lower Contrast

\[(\frac{x}{255.0}^{0.33}) \times 255.0 \]

Invert

\[255 - x \]

Lighten

\[x + 128 \]

Raise Contrast

\[x \times 2 \]

Nonlinear Raise Contrast

\[(\frac{x}{255.0}^{2}) \times 255.0 \]
Gamma correction

Monitors have a intensity to voltage response curve which is roughly a 2.5 power function

Send $v \to$ actually display a pixel which has intensity equal to $v^{2.5}$

\[\phi = 1.0; f(v) = v \]

\[\phi = 2.5; f(v) = v^{1/2.5} = v^{0.4} \]
Neighborhood Operations
Convolution

\[F = \begin{bmatrix}
0.2 & 0.1 & -1.0 \\
0.3 & 0.0 & 0.9 \\
0.1 & 0.3 & -1.0
\end{bmatrix} \]

\[I' = F \ast I \]
Linear Shift Invariant Systems (LSIS)

Linearity:

\[f_1 \rightarrow g_1 \rightarrow f_2 \rightarrow g_2 \]

\[\alpha f_1 + \beta f_2 \rightarrow \alpha g_1 + \beta g_2 \]

Shift invariance:

\[f(x-a) \rightarrow g(x-a) \]
LSIS is doing convolution; convolution is linear and shift invariant

\[g(x) = \int_{-\infty}^{\infty} f(\tau)h(x-\tau)\,d\tau \quad g = f \ast h \]
Convolution - Example

\[c = a \ast b \]
Properties of Convolution

• Commutative

\[a * b = b * a \]

• Associative

\[(a * b) * c = a * (b * c) \]

• Cascade system

\[f \rightarrow h_1 \rightarrow h_2 \rightarrow g \]

\[= f \rightarrow h_1 * h_2 \rightarrow g \]

\[= f \rightarrow h_2 * h_1 \rightarrow g \]
Point Spread Function

- Ideally, the optical system should be a Dirac delta function.
- However, optical systems are never ideal.
- Point spread function of Human Eyes
Point Spread Function

normal vision myopia hyperopia

astigmatism

Images by Richmond Eye Associates
Blurred Image
Gaussian Smoothing

by Charles Allen Gillbert

by Harmon & Julesz

http://www.michaelbach.de/ot/cog_blureffects
Gaussian Smoothing

http://www.michaelbach.de/ot/cog_blureffects
Noise
Blurred Noise
Median Filter

- **Smoothing is averaging**
 - (a) Blurs edges
 - (b) Sensitive to outliers

- **Median filtering**
 - Sort N^2-1 values around the pixel
 - Select middle value (median)
 - Non-linear (Cannot be implemented with convolution)
Median Filter

Can this be described as a convolution?
Example: Noise Reduction

Image with noise

Median filter (5x5)
Example: Noise Reduction

Original image

Image with noise

Median filter (5x5)
X-Edge Detection
Y-Edge Detection
Edge detection filters

Roberts (2 x 2):

\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\]

Sobel (3 x 3):

\[
\begin{pmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & 1
\end{pmatrix}
\]

Sobel (5 x 5):

\[
\begin{pmatrix}
-1 & -2 & 0 & 2 & 1 \\
-2 & -3 & 0 & 3 & 2 \\
-3 & -5 & 0 & 5 & 3 \\
-2 & -3 & 0 & 3 & 2 \\
-1 & -2 & 0 & 2 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 2 & 3 & 2 & 1 \\
2 & 3 & 5 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 \\
-2 & -3 & -5 & -3 & -2 \\
-1 & -2 & -3 & -2 & -1
\end{pmatrix}
\]
General Edge Detection

Can this be described as a convolution?
Some operations preserve the range but change the domain of f:

$$g(x, y) = f(t_x(x, y), t_y(x, y))$$

What kinds of operations can this perform?

Still other operations operate on both the domain and the range of f.
This image is too big to fit on the screen. How can we reduce it?

How to generate a half-sized version?
Image Sub-Sampling

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*
Image Sub-Sampling

1/2

1/4 (2x zoom)

1/8 (4x zoom)
Good and Bad Sampling

Good sampling:
• Sample often or,
• Sample wisely

Bad sampling:
• see aliasing in action!
Aliasing
Alias: n., an assumed name

Picket fence receding into the distance will produce aliasing...

WHY?

Input signal:

Matlab output:

x = 0:.05:5; imagesc(sin((2.^x).*x))

Alias!

Not enough samples
Really bad in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what’s happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)
Sub-Sampling with Gaussian Pre-Filtering

Gaussian 1/2

- Solution: filter the image, *then* subsample
 - Filter size should double for each ½ size reduction. Why?
Sub-Sampling with Gaussian Pre-Filtering

Gaussian 1/2 G 1/4 G 1/8
Compare with...

1/2

1/4 (2x zoom)

1/8 (4x zoom)
1 Introduction

This manual corresponds to version 3.2 of the library.
The library’s fundamental purpose is to provide a consistent interface for users, similar to what shells do when looking up the built-in commands.

The following software, all of which we maintain:

- Dviljk (see the ‘dvljk’ man page)
- Dvipsk (see section “Introduction” in Dvipsk manual)
- GNU font utilities (see section “Introduction” in GNU font utilities manual)
- Web2c (see section “Introduction” in Web2c manual)
- Xdvik (see the ‘xdvi’ man page)

Other software that we do not maintain also use the same library:

- Xdvik (see the ‘xdvi’ man page)
- Web2c (see section “Introduction” in Web2c manual)
From Rick Matthews website, images by Dave Etchells
Warped Image
Warped Image

orig + vector field = warped

how?
Advection (just like a fluid)