HW 1 Solutions

1.
 a. Because there are 4 control points, this needs to be a 3rd degree polynomial (or cubic splines). C^1 continuity.
 b. Same reasoning as above with 6 control points, so 5th degree polynomial. Gives C^2 continuity.

2. Dot product is distributive. So $a(b - \alpha a) = |a|(|b| \cos \theta - \alpha |a|)$
 a. General case: $\alpha = ab/|a|$
 b. $|a| = 0$, then any value of α works
 c. $|a| = 1$, then $\alpha = ab$.

3. $f_(A \cup B) = \min(f_A, f_B)$;
 $f_(A \cap B) = \max(f_A, f_B)$;
 $f_A \text{ complement} = -f_A$

4. Let’s order the points as follows: A(1, -1), B(1, -3), C(4, -1)
 a. Use the constraints $\alpha A + \beta B + \gamma C = P$, and $\alpha + \beta + \gamma = 1$;
 b. $(2,2) : (\alpha, \beta, \gamma) = (13/6, -3/2, 1/3)$
 c. $(2,2) : (\alpha, \beta, \gamma) = (8/3, -2, 1/3)$
 d. It’s outside because α, β, γ all need to be within the range (0,1).

5.
 2 0 0
 a. 0 1 0
 0 0 1
 1 1 0
 b. 0 1 0
 0 0 1

 1/2 -1/2 0
 c. 1/2 1/2 0 (rotation and scale)
 0 0 1