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1 Implicit Methods

The methods we have looked at for solving differential equations in the first section of these notes
(Euler’s method, the midpoint method) are all called “explicit” methods for solving ODE’s. How-
ever, sometimes an ODE can become “stiff,” in which case explicit methods don’t do a very good
job of solving them. Whenever possible, it is desirable to change your problem formulation so that
you don’t have to solve a stiff ODE. Sometimes however that’s not possible, and you have just have
to be able to solve stiff ODE’s. If that’s the case, you’ll usually have to use an ODE solution method
which is “implicit.”

2 Example Stiff ODE

First, what is the meaning and cause of stiff equations? Lets consider an example that arises fre-
quently in dynamics. Suppose that we have a particle, with position (x(t), y(t)), and suppose that
we want the y-coordinate to always be zero. One way of doing this is to add a component −ky(t)
to ẏ(t) where k is a large positive constant. If k is large enough, then the particle will never move
too far away from y(t)= 0, since the −ky(t) term always brings y(t) back towards zero. However,
lets assume that there is no restriction on the x-coordinate, and that we want a user to be able to pull
the particle arbitrarily along the x-axis. So lets assume that over some time interval our differential
equation is simply

Ẋ(t) = d
dt

(
x(t)
y(t)

)
=
( −x(t)
−ky(t)

)
. (2–1)

(We’ll also assume that the particle doesn’t start exactly with y0 = 0.) What’s happening here is that
the particle is strongly attracted to the line y = 0, and less strongly towards x = 0. If we solve the
ODE far enough forward in time, we expect the particle’s location to converge towards (0, 0) and
then stay there once it arrives.

Now suppose we use Euler’s method to solve the equation. If we take a step of size h, we get

Xnew = X0+ hẊ(t0) =
(

x0

y0

)
+ h

( −x0

−ky0

)
.

This yields

Xnew =
(

x0 − hx0

y0 − hky0

)
=
(

(1− h)x0

(1− hk)y0

)
.
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If we look at the y component of this equation, we see that if |1− hk| > 1 then the ynew we compute
will have an absolute value which is larger than |y0|. In other words, if |1− hk| > 1, Euler’s method
will not converge to an answer: each step will result in a value of ynew which is larger than the last.
Technically, Euler’s method is unstable for |1− hk|> 1. Thus, we better have 1− hk >−1 or hk < 2
if we hope to converge. The largest step we can hope to take is less than 2/k.

Now, if k is a large number, we’ll have to take very small steps. This means that the particle
slides towards (0, 0) excruciatingly slowly. Even though the particle may nearly satisfy y0 = 0, we
have to take such small steps that the particles’ progress along the x-axis is pretty much nonexistent.
That’s the embodiment of a stiff ODE. In this case, the stiffness arises from making k very large in
order to keep the particle close to the line y = 0. Later on, when we connect particles with second-
order dynamics together with springs, we’ll experience exactly the same effect: stiff ODE’s. Even
if we use a more sophisticated explicit method such as fourth-order Runge-Kutta, we may do a little
better in the size of our steps, but we’ll still have major problems.

Now as we said above, the name of the game is to pose your dynamics problems so that you don’t
experience stiff ODE’s. However, when you can’t, you’ll have to turn towards an implicit solution
method. The method we’ll show below is the simplest of the implicit methods, and its based on
taking an Euler step “backwards.”

3 Solving Stiff ODE’s

Given a differential equation

d
dt

X(t)= f (X(t)),

the explicit Euler update would be Xnew =X0+ hf (X(t0)), to advance the system forward h in time.
For a stiff problem though, we change the update to instead be

Xnew = X0 + hf (Xnew) (3–1)

That is, we’re going to evaluate f at the point we’re aiming at, rather than where we came from. (If
you think about reversing the world and running everything backwards, the above equation makes
perfect sense. Then the equation says “if you were at Xnew, and took a step−hf (Xnew), you’d end up
at X0.” So if your differential equation represents a system that is reversible in time, this step makes
sense. It’s just finding a point Xnew such that if you ran time backwards, you’d end up at X0.) So,
we’re looking for a Xnew such that f , evaluated there, times h, points directly back at where we came
from. Unfortunately, we can’t in general solve for Xnew, unless f happens to be a linear function.

To cope with this, we’ll replace f (Xnew) with a linear approximation, again based on f ’s Taylor
series. Lets define 1X by 1X = Xnew−X0. Using this, we rewrite equation (3–1) as

X0+1X = X0 + hf (X0 +1X).

or just

1X = hf (X0+1X).

Next, lets approximate f (X0 +1X) by

f (X0)+ f ′(X0)1X.
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(Note that since f (X0) is a vector, the derivative f ′(X0) is a matrix.) Using this approximation, we
can approximate 1X with

1X = h
(
f (X0)+ f ′(X0)1X

)
.

or

1X− h f ′(X0)1X = hf (X0)

Rewriting this as (
1
h

I− f ′(X0)

)
1X = f (X0),

where I is the identity matrix, we can solve for 1X as

1X =
(

1
h

I− f ′(X0)

)−1

f (X0) (3–2)

Computing Xnew = X0+1X is clearly more work than using an explicit method, since we have
to solve a linear system at each step. While this would seem a serious weakness, computationally
speaking, don’t despair (yet). For many types of problems, the matrix f ′ will be sparse—for exam-
ple, if we are simulating a spring-lattice, f ′ will have a structure which matches the connectivity
of the particles. (For a discussion of sparsity and solution techniques, see Baraff and Witkin [1].
Basic material in Press et al. [2] will also prove useful.) As a result, it is usually possible to solve
equation (3–2) in linear time (i.e. time proportional to the dimension of X). In such cases, the payoff
is dramatic: we can usually take considerably large timesteps without losing stability (i.e. without
divergence, as happens with the explicit case if the stepsize is too large). The time taken in solving
each linear system is thus more than offset by the fact that our timesteps are often orders of magnitude
bigger than we could manage using an explicit method. (Of course, the code needed to do all this is
much more complicated than in the explicit case; like we said, make your problems un-stiff if you
can, and if not, pay the price.)

Lets apply the implicit method to equation (2–1). We have that f (X(t)) is

f (X(t))=
( −x(t)
−ky(t)

)
.

Differentiating with respect to X yields

f ′(X(t))= ∂

∂X
f (X(t))=

( −1 0
0 −k

)
Then the matrix 1

h I− f ′(X0) is( 1
h + 1 0

0 1
h + k

)
=
( 1+h

h 0
0 1+kh

h

)
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Inverting this matrix, and multiplying by f (X0) yields

1X =
( 1+h

h 0
0 1+kh

h

)−1( −x0

−ky0

)

=
( h

h+1 0
0 h

1+kh

)( −x0

−ky0

)

= −


h

h+ 1
x0

h
1+ kh

ky0


What is the limit on the stepsize in this case? The answer is: there is no limit! In this case, if we

let h grow to infinity, we get

lim
h→∞

1X = lim
h→∞
−


h

h+ 1
x0

h
1+ kh

ky0

 = −
 x0

1
k

ky0

 = −( x0

y0

)
.

This means that we achieve Xnew = X0 + (−X0) = 0 in a single step! For a general stiff ODE, we
won’t be able to take steps of arbitrary size, but we will be able to take much larger steps using an
implicit method than using an explicit method. The extra cost of solving a linear equation is more
than made up by the time saved by taking large timesteps.

4 Solving Second-Order Equations

Most dynamics problems are written in terms of a second-order differential equation:

ẍ(t) = f (x(t), ẋ(t)). (4–1)

This equation is easily converted to a first-order differential equation by adding new variables. If we
define v = ẋ, then we can rewrite equation (4–1) as

d
dt

(
x(t)
v(t)

)
=
(

v(t)
f (x(t), v(t))

)
(4–2)

which is a first-order system. However, applying the backward Euler method to equation (4–2)
results in a linear system of size 2n×2n where n is the dimension of x. A fairly simple transformation
allows us to reduce the size of the problem to solving an n× n linear system instead. It is important
to note that both the 2n× 2n and n× n systems will have the same degree of sparsity, so solving the
smaller system will be faster.

The n×n system that needs to be solved is derived as follows. Let us simplify notation by writing
x0 = x(t0) and v0 = v(t0). We also define1x= x(t0+ h)− x(t0) and1v= v(t0+ h)− v(t0). The
backward Euler update, applied to equation (4–2), yields(

1x
1v

)
= h

(
v0 +1v

f (x0 +1x, v0 +1v)

)
. (4–3)
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Applying a Taylor series expansion to f —which in this context is a function of both x and v—
yields the first-order approximation

f (x0 +1x, v0 +1v) = f0 + ∂f
∂x
1x+ ∂f

∂v
1v.

In this equation, the derivative ∂f/∂x is evaluated for the state (x0, v0) and similarly for ∂f/∂v.
Substituting this approximation into equation (4–3) yields the linear system

(
1x
1v

)
= h

 v0 +1v

(f0 + ∂f
∂x
1x+ ∂f

∂v
1v)

 . (4–4)

Taking the bottom row of equation (4–4) and substituting 1x = h(v0 +1v) yields

1v = h

(
f0 + ∂f

∂x
h(v0 +1v)+ ∂f

∂v
1v
)
.

Letting I denote the identity matrix, and regrouping, we obtain(
I− h

∂f
∂v
− h2 ∂f

∂x

)
1v = h

(
f0 + h

∂f
∂x

v0

)
(4–5)

which we then solve for 1v. Given 1v, we trivially compute 1x = h(v0 +1v).
The above assumes that the function f has no direct dependence on time; in the case that f varies

directly with time (for example, if f describes time-varying external forces, or references moving
points or coordinate frames that are not variables of x) then equation (4–5) needs an additional term
to account for this dependence:(

I− h
∂f
∂v
− h2 ∂f

∂x

)
1v = h

(
f0 + h

∂f
∂x

v0 + ∂f
∂t

)
(4–6)
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