Measuring Material Appearance: BRDF, BSSRDF, BTF

Computer Graphics, Fall 2009 Mohit Gupta

A variety of material appearances

Methods Relying on Surface Reflectance

Shape from Shading

Texture Modeling

Photometric Stereo

Reflection Separation

Mechanisms of Reflection

Surface Reflection:

Specular Reflection Glossy Appearance Highlights Dominant for Metals

Body Reflection:

Diffuse Reflection Matte Appearance Non-Homogeneous Medium Clay, paper, etc

Image Intensity = Body Reflection + Surface Reflection

Mechanisms of Reflection

Body Reflection:

Diffuse Reflection
Matte Appearance
Non-Homogeneous Medium
Clay, paper, etc

Many materials exhibit both Reflections:

Surface Reflection:

Specular Reflection
Glossy Appearance
Highlights
Dominant for Metals

Surface Appearance

Image intensities = f(normal, surface reflectance, illumination)

Surface Reflection depends on both the viewing and illumination directions.

BRDF: Bidirectional Reflectance Distribution Function

$$E^{surface}(\theta_i,\phi_i)$$
 Irradiance at Surface in direction (θ_i,ϕ_i)

$$L^{surface}(\theta_r,\phi_r)$$
 Radiance of Surface in direction (θ_r,ϕ_r)

$$\text{BRDF}: f(\theta_i, \phi_i; \theta_r, \phi_r) = \frac{L^{surface}(\theta_r, \phi_r)}{E^{surface}(\theta_i, \phi_i)}$$

Derivation of the Scene Radiance Equation

From the definition of BRDF:

$$L^{surface}(\theta_r, \phi_r) = E^{surface}(\theta_i, \phi_i) f(\theta_i, \phi_i; \theta_r, \phi_r)$$

Important Properties of BRDFs

Rotational Symmetry:

BRDF does not change when surface is rotated about the normal.

BRDF is only a function of 3 variables : $f(\theta_i, \theta_r, \phi_i - \phi_r)$

• Helmholtz Reciprocity: (follows from 2nd Law of Thermodynamics)

BRDF does not change when source and viewing directions are swapped.

$$f(\theta_i, \phi_i; \theta_r, \phi_r) = f(\theta_r, \phi_r; \theta_i, \phi_i)$$

Specular Reflection and Mirror BRDF

- Very smooth surface.
- All incident light energy reflected in a SINGLE direction. (only when v = r)
- Mirror BRDF is simply a double-delta function :

specular albedo
$$f(\theta_i,\phi_i;\theta_v,\phi_v) = \rho_s \ \delta(\theta_i-\theta_v) \ \delta(\phi_i+\pi-\phi_v)$$

• Surface Radiance :
$$L = I \ \rho_s \ \delta(\theta_i - \theta_v) \ \delta(\phi_i + \pi - \phi_v)$$

Specular Reflections in Nature

It's surprising how long the reflections are when viewed sitting on the river bank.

Compare sizes of objects and their reflections!

The reflections when seen from a lower view point are always longer than when viewed from a higher view point.

Specular Reflections in Nature

Diffuse Reflection and Lambertian BRDF

- ullet Surface appears equally bright from ALL directions! (independent of $\, {oldsymbol {\cal V}} \,)$
- Lambertian BRDF is simply a constant : $f(\theta_i,\phi_i;\theta_r,\phi_r) = \frac{\rho_d}{\pi} \text{ albedo}$
- Surface Radiance : $L = \frac{\rho_d}{\pi} I \cos \theta_i = \frac{\rho_d}{\pi} I \dot{n} \dot{s}$ source intensity
- Commonly used in Vision and Graphics!

Diffuse Reflection and Lambertian BRDF

White-out Conditions from an Overcast Sky

CAN'T perceive the shape of the snow covered terrain!

Modeling Rough Surfaces - Microfacets

- Roughness simulated by Symmetric V-groves at Microscopic level.
- Distribution on the slopes of the V-grove faces are modeled.
- Each microfacet assumed to behave like a perfect lambertian surface.

View Dependence of Matte Surfaces - Key Observation

- Overall brightness increases as the angle between the source and viewing direction decreases. WHY?
- Pixels have finite areas. As the viewing direction changes, different mixes between dark and bright are added up to give pixel brightness.

Slope Distribution Model

- Model the distribution of slopes as Gaussian.
- Mean is Zero, Variance represents ROUGHNESS.

$$\rho_{\alpha}(\alpha) = \frac{1}{\sqrt{2\pi\sigma_{\alpha}}} e^{-\frac{\alpha^2}{2\sigma_{\alpha}^2}}.$$

Oren-Nayar Model – Different Factors (contd.)

- Take into account two light bounces (reflections).
- Hard to solve analytically, so they find a functional approximation.

Oren-Nayar Model – Final Expression

$$L(\theta_r, \theta_i, \phi_r - \phi_i; \rho, \sigma) = \frac{\rho}{\pi} E_0 \cos \theta_i (A + BMax \left[0, \cos (\phi_r - \phi_i) \right] \sin \alpha \tan \beta),$$

$$A = 1.0 - 0.5 \frac{\sigma^2}{\sigma^2 + 0.33}, \qquad \alpha = Max(\theta_r, \theta_i)$$

$$B = 0.45 \frac{\sigma^2}{\sigma^2 + 0.09}, \qquad \beta = Min(\theta_r, \theta_i).$$

Lambertian model is simply an extreme case with roughness equal to zero.

Surface Roughness Causes Flat Appearance

Surface Roughness Causes Flat Appearance

Lambertian model

Valid for only SMOOTH MATTE surfaces.

Bad for ROUGH MATTE surfaces.

Rendered Sphere with Lambertian BRDF

- Edges are dark (N.S = 0) when lit head-on
- See shading effects clearly.

Why does the Full Moon have a flat appearance?

- The moon appears matte (or diffuse)
- But still, edges of the moon look bright (not close to zero) when illuminated by earth's radiance.

Why does the Full Moon have a flat appearance?

Lambertian Spheres and Moon Photos illuminated similarly

Oren-Nayar Model – Main Points

- Physically Based Model for Diffuse Reflection.
- Explains view dependent appearance in Matte Surfaces
- •Lambertian model is simply an extreme case with roughness equal to zero.

Comparison to Ground Truth

Fig. 7. (a-c) Real image of a cylindrical clay vase compared with images rendered using the Lambertian and proposed models. Illumination is from the direction $\theta_i = 0^{\circ}$. (d) Comparison between image brightness along the cross-sections of the three vases.

Glossy Surfaces

- Delta Function too harsh a BRDF model (valid only for highly polished mirrors and metals).
- Many glossy surfaces show broader highlights in addition to mirror reflection.

- Surfaces are not perfectly smooth they show micro-surface geometry (roughness).
- Example Models : Phong model

Torrance Sparrow model

Blurred Highlights and Surface Roughness

Roughness

Phong Model: An Empirical Approximation

How to model the angular falloff of highlights:

Phong Model

- Sort of works, easy to compute
- But not physically based (no energy conservation and reciprocity).
- Very commonly used in computer graphics.

Phong Examples

• These spheres illustrate the Phong model as *lighting direction* and n_{shiny} are varied:

Those Were the Days

• "In trying to improve the quality of the synthetic images, we do not expect to be able to display the object exactly as it would appear in reality, with texture, overcast shadows, etc. We hope only to display an image that approximates the real object closely enough to provide a certain degree of realism."

– Bui Tuong Phong, 1975

Summary of Surfaces and BRDFs

Many surfaces may be rough and show both diffuse and surface reflection.

Summary of Surfaces and BRDFs

Many surfaces may be rough and show both diffuse and surface reflection.

Measuring BRDFs

Why bother modeling BRDFs?

Why not directly measure BRDFs?

- True knowledge of surface properties
- Accurate models for graphics

Measuring BRDFs

- A full BRDF is 4-dimensional
- Simpler measurements (0D/1D/2D/3D) often useful
- Lets start with simplest and get more complex

Measuring Reflectance

0º/45º
Diffuse Measurement

45º/45º Specular Measurement

Gloss Measurements

- Standardized for applications such as paint manufacturing
- Example: "contrast gloss" is essentially ratio of specular to diffuse
- "Sheen" is specular measurement at 85°

BRDF Measurements

• Next step up in complexity: measure BRDF in plane of incidence (1- or 2-D)

Gonioreflectometers

 Three degrees of freedom spread among light source, detector, and/or sample

Gonioreflectometers

• Three degrees of freedom spread among light source, detector, and/or sample

Gonioreflectometers

 Can add fourth degree of freedom to measure anisotropic BRDFs

Image-Based BRDF Measurement

- Reduce acquisition time by obtaining larger (e.g. 2-D) slices of BRDF at once
- Idea: Camera can acquire 2D image
- Requires mapping of angles of light to camera pixels

Ward's BRDF Measurement Setup

Collect reflected light with hemispherical mirror

Ward's BRDF Measurement Setup

Result: each image captures light at all exitant angles

Image-Based BRDF Measurement

• For uniform BRDF, capture 2-D slice corresponding to variations in normals (Marschner et al)

Image-Based BRDF Measurement

Any object with known geometry

Image-based measurement of skin

Measurement

- Light Source
 - Hamamatsu SQ Xenon lamp
 - Stable emission output
 - Continuous and relatively constant radiation spectrum

Measurement

- Turntable
 - Kaidan MD-19
 - Computer-controlled
- Dark Room
 - Walls painted with flat black paint
- Spherical Samples

Calibration

- Geometric calibration
 - Contact digitizer
 - Faro Arm
 - Intrinsic & extrinsic camera parameters
 - Sphere center & radius
 - Light Position
 - parameterized on a circle in 3D

Measurement

- 20-80 million reflectance measurements per material
- Each tabulated BRDF entails 90x90x180x3=4,374,000 measurement bins

Rendering from Tabulated BRDFs

- These BRDFs are immediately useful
- Direct renderings from measurements

Course 10: Realistic Materials in Computer Graphics

Measurement Process

Course 10: Realistic Materials in Computer Graphics

Linear Combinations of BRDFs (LCB)

- Can we find a linear combination of our existing BRDFs that match any new one?
- Requires only estimating 100 coefficients for source BRDFs
- Compute a set of 800 constraints that allow estimating these 100 coefficients robustly

$$\alpha_1$$
 + α_2 + α_3 + α_4 + ...=

BRDFs as Vectors in High Dimensional Space

 Each tabulated BRDF is a vector in 90x90x180x3 =4,374,000 dimensional space

4,374,000

Course 10: Realistic Materials in Computer Graphics

Linear Analysis (PCA)

10

- Find optimal linear basis for our data set
- 45 components needed to reduce residue to under measurement error

mean

Navigation Results

Adding Silver Trait

Course 10: Realistic Materials in Computer Graphics

Navigation Results

Adding Specular Trait

Course 10: Realistic Materials in Computer Graphics

Navigation Results

Adding Metallic Trait

Course 10: Realistic Materials in Computer Graphics

Representing Physical Processes

Steel Oxidation

Course 10: Realistic Materials in Computer Graphics

Next Step in the Appearance Food Chain

Textures

Spatially Varying BRDFs

Few slides about BTF here – from Kristin Dana's slides

BRDF vs. BTF

Samples for Measurements

61 samples:

- specular (foil, artificial grass)
- diffuse (brick, plaster)
- natural (fur, moss)
- man-made (velvet, leather)
- isotropic (bread, concrete)
- anisotropic (corn husk, wood)

Measurement Methods

Example images

Measurement Methods

Measurement Methods

Next Step in the Appearance Food Chain

Why bother about measuring patches or spheres?

Why not measure the scenes themselves directly?

- Change only lighting (for Relighting)
- Change only viewpoint (Light Fields)
- Change both lighting and view point

Debevec et al. Siggraph 2000

VIDEO and DEMO for relighting

Time-Varying BRDFs

Bo Sun

Kalyan Sunkavalli

Ravi Ramamoorthi

Peter Belhumeur

Shree Nayar

Columbia University

Materials Change with Time

Previous Work

Time-Varying Spatial Albedo Patterns

[J. Dorsey et al., 96]

[J. Dorsey et al., 99]

[J. Lu et al., 05]

[S. Enrique et al., 05]

Paints, Wet Surfaces and Dust

[C. J. Curtis., 97]

[J. W. Jensen et al., 99]

[E. Nakamae et al., 96]

[S. Hsu et al., 96]

Our Goals

• Efficient TVBRDF Acquisition

Underlying Temporal Trend Analysis

Developing Analytic TVBRDF Models

millisec exposures

Acquisition - Sampling

Paints	Wet Surface	Dust	Misc.
Crayola Watercolor Blue Red Green Purple Orange Light Green Yellow Krylon Spray Paint Flat / White Satin / Green Glossy / Blue Glossy / Blue Satin / Dove-Teal Rust-Oleum Spray Flat / Yellow Daler-Rowney Oil Prussian Green Prussian Red Light Green Cadmium Yellow	Fabrics Alme Grey Blue Idemo Beige Ingebo Dark Red Pink Denim Beige Cotton Orange Cotton Pink Cotton White Plaster Cement Terracotta Clay	Joint Compound Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint Household Dust Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint	Chocolate Melting Red Wine on Fabric

TE SUTTIFIES WITH THE CHITTE VALVITIES CHICALS

Paints	Wet Surface	Dust	Misc.
Crayola Watercolor Blue Red Green Purple Orange Light Green Yellow Krylon Spray Paint Flat / White Satin / Green Glossy / Blue Glossy / Blue Satin / Dove-Teal Rust-Oleum Spray Flat / Yellow Daler-Rowney Oil Prussian Green Prussian Red Light Green Cadmium Yellow	Fabrics Alme Grey Blue Idemo Beige Ingebo Dark Red Pink Denim Beige Cotton Orange Cotton Pink Cotton White Plaster Cement Terracotta Clay	Joint Compound Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint Household Dust Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint	Chocolate Melting Red Wine on Fabric

Paints	Wet Surface	Dust	Misc.
Crayola Watercolor Blue Red Green Purple Orange Light Green Yellow Krylon Spray Paint Flat / White Satin / Green Glossy / Blue Glossy / Blue Satin / Dove-Teal Rust-Oleum Spray Flat / Yellow Daler-Rowney Oil Prussian Green Prussian Red Light Green Cadmium Yellow	Fabrics Alme Grey Blue Idemo Beige Ingebo Dark Red Pink Denim Beige Cotton Orange Cotton Pink Cotton White Plaster Cement Terracotta Clay	Joint Compound Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint Household Dust Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint	Chocolate Melting Red Wine on Fabric

Paints	Wet Surface	Dust	Misc.
Crayola Watercolor Blue Red Green Purple Orange Light Green Yellow Krylon Spray Paint Flat / White Satin / Green Glossy / Blue Glossy / Blue Satin / Dove-Teal Rust-Oleum Spray Flat / Yellow Daler-Rowney Oil Prussian Green Prussian Red Light Green Cadmium Yellow	Fabrics Alme Grey Blue Idemo Beige Ingebo Dark Red Pink Denim Beige Cotton Orange Cotton Pink Cotton White Plaster Cement Terracotta Clay	Joint Compound Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint Household Dust Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint	Chocolate Melting Red Wine on Fabric

Paints	Wet Surface	Dust	Misc.
Crayola Watercolor Blue Red Green Purple Orange Light Green Yellow Krylon Spray Paint Flat / White Satin / Green Glossy / Blue Glossy / Blue Satin / Dove-Teal Rust-Oleum Spray Flat / Yellow Daler-Rowney Oil Prussian Green Prussian Red Light Green Cadmium Yellow	Fabrics Alme Grey Blue Idemo Beige Ingebo Dark Red Pink Denim Beige Cotton Orange Cotton Pink Cotton White Plaster Cement Terracotta Clay	Joint Compound Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint Household Dust Electric Red Paint Satin / Red Spray Satin / Dove-Teal Flat / Yellow Spray Almas Red Fabric Green Grey Paint	Chocolate Melting Red Wine on Fabric

Measurement

Analytic BRDF Functions

• The Oren-Nayar diffuse model

$$\rho_d(\omega_i, \omega_o; \sigma_d, K_d^{r,g,b})$$

The Torrance-Sparrow specular model

$$\rho_s(\omega_i, \omega_o; \sigma_s, K_s)$$

The Blinn's dust model

$$\rho(\tau) = (1 - T_1(\tau)) \cdot \rho_{dust} + T_2(\tau) \cdot \rho_d + \rho_s(\sigma_s, K_s)$$

Data Fitting

Temporal Trends

Time-Varying Phenomena

- Paints drying on smooth surfaces
- Water drying on rough surfaces
- Dust accumulation

Paints

- Exponential fall-off of specular albedo and roughness
- Diffuse color shifts in a dichromatic plane

Paints

- Exponential fall-off of specular albedo and roughtness
- Diffuse color shifts in a dichromatic plane

$$K_{s}(t) = (K_{s,wet} - K_{s,dry}) \cdot e^{-\lambda t} + K_{s,dry}$$

$$\sigma_{s}(t) = \frac{\sigma_{s,wet} \cdot \sigma_{s,dry}}{(\sigma_{s,dry} - \sigma_{s,wet}) \cdot e^{-\lambda t} + \sigma_{s,wet}}$$

Paints

- Exponential fall-off of specular albedo and roughtness
- Diffuse color shifts in a dichromatic plane

$$\rho_d(t) = \alpha(t) \cdot \rho_{d,surface} + \beta(t) \cdot \rho_{d,surface}$$

Paints - Spatial Variations

Captured Blue Watercolor on White Surface

Paints – Effects Transfer

Synthesized Green Watercolor on White Surface

Paints – Effects Transfer

Synthesized Blue Watercolor on Red Surface

Wet Surfaces

- Diffuse color shifts on a straight line
- Sigmoidal change of surface intensity

$$\rho_d(t) = \alpha(t) \cdot \rho_{d,dry} + (1 - \alpha(t)) \cdot \rho_{d,wet}$$

Wet Surfaces

- Diffuse color shifts on a straight line
- Sigmoidal change of surface intensity

Time-Varying Phenomena

- Paints drying on smooth surfaces
- Water drying on rough surfaces
- Dust accumulation

Dust

- Analysis generalizes to other BRDF models
- Exponential fall-off of specular highlights

Dust

- Analysis generalizes to other BRDF models
- Exponential fall-off of specular highlights

$$\rho(\tau) = (1 - T(\tau)) \cdot \rho_{dust} + T(\tau) \cdot \rho_d + e^{-\lambda \tau} \cdot \rho_s$$

$$\rho(\tau) = (1 - T_1(\tau)) \cdot \rho_{dust} + T_2(\tau) \cdot \rho_d + \rho_s(\sigma_s, K_s)$$

Dust – Final Example

