Parametric Curves

Modeling:
* parametric curves (Splines)
* polygonal meshes

Roller coaster

 Next programming assignment involves
creating a 3D roller coaster animation

« We must model the 3D curve describing
the roller coaster, but how?

« How to make the simulation obey the laws
of gravity?

Modeling Complex Shapes

We want to build models of very complicated objects

An equation for a sphere is possible, but how about an
equation for a telephone, or a face?

Complexity is achieved
using simple pieces
— polygons, parametric curves

and surfaces, or implicit
curves and surfaces

— This lecture: parametric
curves

What Do We Need From Curves
in Computer Graphics?

- Local control of shape (so that easy to build and
modify)

- Stability
- Smoothness and continuity

- Ability to evaluate derivatives
- Ease of rendering

Curve Representations

- Explicit: y = f(x)

Y
y=mx+b
— Easy to generate points
— Must be a function: big limitation—vertical lines?

X

Curve Representations

- Explicit: y = f(x)

y=mx+b
— Easy to generate points
— Must be a function: big limitation—vertical lines?

‘Implicit: f(x,y)=0

XX +y -r’=0
+Easy to test if on the curve
—Hard to generate points

Curve Representations

- Explicit: y = f(x)

y=mx+b
+ Easy to generate points
— Must be a function: big limitation—vertical lines?

‘Implicit: f(x,y)=0
XX +y -r’=0
+Easy to test if on the curve
—Hard to generate points

‘Parametric: (x,y) = (f(u), g(u))

(x,y)=(cosu,sinu)

+Easy to generate points

Parameterization of a Curve

 Parameterization of a curve: how a change in u moves
you along a given curve in xXyz space.

Polynomial Interpolation

* An n-th degree polynomial fits a curve to n+1 points
— called Lagrange Interpolation

— result is a curve that is too wiggly, change to any control point
affects entire curve (nonlocal) — this method is poor

* We usually want the curve to be as smooth as possible

— minimize the wiggles

— high-degree polynomials are bad

Splines: Piecewise Polynomials

* A spline is a piecewise polynomial - many low degree
polynomials are used to interpolate (pass through) the
control points

* Cubic piecewise polynomials are the most common:

— piecewise definition gives local control

Piecewise Polynomials

 Spline: lots of little polynomials pieced together
e Want to make sure they fit together nicely

Cop C-L‘.-Iltinuit}-' P Co & €, continuity Co & C; & Cycontinuity

Continuous in Continuous in Continuous in
position position and tangent position, tangent,
vector and curvature

Splines

* Types of splines:

— Hermite Splines
Catmull-Rom Splines
Bezier Splines
Natural Cubic Splines
B-Splines
NURBS

Hermite Curves

» Cubic Hermite Splines

P

o

That 1s, we want a way to specify the end points and the
slope at the end points!

The Cubic Hermite Spline Equation

e Using some algebra, we obtain:
I p
b
\YZ
11V, |

point that ' control matrix
gets drawn (what the user gets to pick)

e This form typical for splines

— basis matrix and meaning ot control matrix change with
the spline type

The Cubic Hermite Spline Equation

e Using some algebra, we obtain:
I p
b
\YZ
11V, |

point that ' control matrix
gets drawn (what the user gets to pick)

2&!3 —3&!2 + 1 [P,

3 2 - .
—2u” + 3u 4 Basis Functions

Four Basis Functions for Hermite splines

Hermite Blending o
Functions

2u’ =3u’ +1
—2u’ +3u”

4 2
uw =2u"- +u

Vp,

4 Basis Functions

Every cubic Hermite spline is a linear combination (blend)
of these 4 functions

Piecing together Hermite Curves

e It's easy to make a multi-segment Hermite spline
each piece is specified by a cubic Hermite curve
just specify the position and tangent at each “‘joint”
the pieces fit together with matched positions and first derivatives
gives C1 continuity
 The points that the curve has to pass through are called
knots or knot points

p(1) =q(0)

Catmull-Rom Splines

 With Hermite splines, the designer must specify all the
tangent vectors

e Catmull-Rom: an interpolating cubic spline with built-
in C! continuity.

Catmull-Rom Splines

 With Hermite splines, the designer must specify all the
tangent vectors

e Catmull-Rom: an interpolating cubic spline with built-
in C! continuity.

tangent at p; = s(p;,; - pi.1)

8

Catmull-Rom Spline Matrix

p(u) =[u3 wou 1]

spline coefficients

-5 2-—5
25
-s 0

0 1

CR basis

* Derived similarly to Hermite
- Parameter s is typically set to s=1/2.

§—2

s=3 3-2s

LE‘

0

s |

=R
0

0

—

Py
P>
Ps

| Py

control vector

1

]

Cubic Curves in 3D

 Three cubic polynomials, one for each coordinate
— x(u) = aw’+b u’+c u+d.
— y(u) =a w+b u+c u+d,

— z(u) = a.w+b.u’+cu+d.

e In matrix notation

2

[x(u) yu) E{H}]=[“3 u-u 1

Catmull-Rom Spline Matrix in 3D

—s 2-5 s=2 s |lx y, z |

125 s—-3 3-25 -5

| onl=l3 2 .
[.r(h!) y(u) «-(H)] [” u” w1 s 0 g 0||x vy, z

0 1 0 0lx v z|

CR basis control vector

Bezier Curves*

Another variant of the same game

Instead of endpoints and tangents, four control points
— points PO and P3 are on the curve: P(u=0) =P0, P(u=1)=P3
— points P1 and P2 are off the curve
— P'(u=0) = 3(P1-P0), P'(u=1) = 3(P3 -P2)

Convex Hull property

— curve contained within convex hull of control points
Gives more control knobs (series of points) than Hermite

Scale factor (3) is chosen to make ‘““velocity” approximately constant

The Bezier Spline Matrix*

-1 3 -31]|x y z

) 3 -6 3 0 |x, v, 2
[x y 4.]=[u3 u- u l] 2o
' -3 3 0 0 |x; y; 24
1 0 O O)|x, y, 24 |

Bezier basis Bezier
control vector

Bezier Blending Functions®

Bezier Blending
Functions

/[

4 Also known as the order 4, degree
3 Bernstein polynomials

Nonnegative, sum to 1

The entire curve lies inside the
polyhedron bounded by the
control points

Splines with More Continuity?

 How could we get C? continuity at control points?

e Possible answers:

— Use higher degree polynomials

degree 4 = quartic, degree 5 = quintic, ... but these get
computationally expensive, and sometimes wiggly

— Give up local control natural cubic splines

A change to any control point affects the entire curve
— Give up interpolation cubic B-splines

Curve goes near, but not through, the control points

Piecewise Polynomials

* Spline: lots of little polynomials pieced together
e Want to make sure they fit together nicely

Cop C-L‘.-Iltinuit}-' P Co & €, continuity Co & C; & Cycontinuity

Continuous in Continuous in Continuous in
position position and tangent position, tangent,
vector and curvature

Comparison of Basic Cubic Splines

Type Local Control Continuity Interpolation

Hermite YES C1 YES
Bezier YES C1 YES
Catmull-Rom YES C1 YES
Natural NO C2 YES
B-Splines YES C2 NO

e Summary

— Can’t get C2, interpolation and local control with cubics

Natural Cubic Splines*

 If you want 2nd derivatives at joints to match up, the
resulting curves are called natural cubic splines

 It’s a simple computation to solve for the cubics’
coefficients. (See Numerical Recipes in C book for
code.)

* Finding all the right weights is a global calculation
(solve tridiagonal linear system)

B-Splines*

e Give up interpolation
— the curve passes near the control points

— best generated with interactive placement (because it’s
hard to guess where the curve will go)

* Curve obeys the convex hull property

e C2 continuity and local control are good
compensation for loss of interpolation

B-Spline Basis*

- We always need 3 more control points than spline
pieces

How to Draw Spline Curves

 Basis matrix eqn. allows same code to draw any spline type
e Method 1: brute force

Calculate the coefficients

For each cubic segment, vary u from 0 to 1 (fixed step size)
Plug in « value, matrix multiply to compute position on curve

Draw line segment from last position to current position

—

-5 2-5 §-2 5
12s s-3 3-25 -5

x v zl=lu u® ul

[)] [1—-s O S 0 Y, Z

| 0] 0 0 Jlxy ya 24

CR basis control vector

22

How to Draw Spline Curves
What’s wrong with this approach?

—Draws in even steps of u

—Even stepsofu = even steps of x
—Line length will vary over the curve

—Want to bound line length
»too long: curve looks jagged

»t00 short: curve is slow to draw

Drawing Splines, 2

e Method 2: recursive subdivision - vary step size to draw short lines

Subdivide(u0,ul,maxlinelength)

umid = (u0 + ul)/2

X0 = P(ul)

X1l = P(ul)

if |x1 - x0| > maxlinelength
Subdivide(u0,umid,maxlinelength)
Subdivide(umid,ul,maxlinelength)

else drawline(x0,x1)

e Variant on Method 2 - subdivide based on curvature

— replace condition in ‘““if”’ statement with straightness criterion

— draws fewer lines in flatter regions of the curve

T

In Summary...

* Summary:

— piecewise cubic is generally sufficient

— define conditions on the curves and their continuity

 Things to know:

— basic curve properties (what are the conditions, controls, and properties for
each spline type)

— generic matrix formula for uniform cubic splines x(u) = uBG

— given definition derive a basis matrix

