Spatial Data Structures

Hierarchical Bounding Volumes

Grids
Octrees
BSP Trees




Speeding Up Computations




Speeding Up Computations

- Ray Tracing

— Spend a lot of time doing ray object intersection tests




Speeding Up Computations

- Ray Tracing

— Spend a lot of time doing ray object intersection tests

+ Hidden Surface Removal — painters algorithm
— Sorting polygons front to back




Speeding Up Computations

- Ray Tracing

— Spend a lot of time doing ray object intersection tests

+ Hidden Surface Removal — painters algorithm
— Sorting polygons front to back

- Collision between objects
— Quickly determine if two objects collide

n? computations




Speeding Up Computations
- Ray Tracing

— Spend a lot of time doing ray object intersection tests

+ Hidden Surface Removal — painters algorithm
— Sorting polygons front to back

- Collision between objects
— Quickly determine if two objects collide

Spatial data-structures




Spatial Data Structures

+ We'll look at
— Hierarchical bounding volumes
— Grids
— Qctrees
— K-d trees and BSP trees

+ (Good data structures can give speed up ray tracing by 10x or 100x




Bounding Volumes

+ Wrap things that are hard to check for intersection in things that are
easy to check

— Example: wrap a complicated polygonal mesh in a box
— Ray can't hit the real object unless it hits the box
— Adds some overhead, but generally pays for itself.




Bounding Volumes

Wrap things that are hard to check for intersection in things that are
easy to check

— Example: wrap a complicated polygonal mesh in a box
— Ray can't hit the real object unless it hits the box
— Adds some overhead, but generally pays for itself.

Most common bounding volume types: sphere and box
— box can be axis-aligned or not




Bounding Volumes

Wrap things that are hard to check for intersection in things that are
easy to check

— Example: wrap a complicated polygonal mesh in a box

— Ray can't hit the real object unless it hits the box
— Adds some overhead, but generally pays for itself.

Most common bounding volume types: sphere and box
— box can be axis-aligned or not

You want a snug fit!
But you don’t want expensive intersection tests!

N




Bounding Volumes

« You want a snug fit!
- But you don’t want expensive intersection tests!

- Use the ratio of the object volume to the enclosed volume as a measure
of fit.

« Cost=n"B + m*l

n - is the number of rays tested against the bounding volume
B - is the cost of each test (Do not need to compute exact intersection!)
m - is the number of rays which actually hit the bounding volume

| - is the cost of intersecting the object within

Zm




Bounding Volumes

« You want a snug fit!
- But you don’t want expensive intersection tests!

- Use the ratio of the object volume to the enclosed volume as a measure
of fit.

« Cost=n"B + m*l
n - is the number of rays tested against the bounding volume
B - is the cost of each test (Do not need to compute exact intersection!)
m - is the number of rays which actually hit the bounding volume

| - is the cost of intersecting the object within

e
P




Hierarchical Bounding Volumes

- Still need to check ray against every object --- O(n)

- Use tree data structure
— Larger bounding volumes contain smaller ones




Hierarchical Bounding Volumes

- Still need to check ray against every object --- O(n)

- Use tree data structure
— Larger bounding volumes contain smaller ones




Hierarchical Bounding Volumes

- Still need to check ray against every object --- O(n)

- Use tree data structure
— Larger bounding volumes contain smaller ones




Hierarchical Bounding Volumes

- Still need to check ray against every object --- O(n)

- Use tree data structure
— Larger bounding volumes contain smaller ones




Hierarchical Bounding Volumes

- Still need to check ray against every object --- O(n)

- Use tree data structure
— Larger bounding volumes contain smaller ones

Check intersect root
If not return no intersections

12




Hierarchical Bounding Volumes

- Still need to check ray against every object --- O(n)

- Use tree data structure
— Larger bounding volumes contain smaller ones

Check intersect root
If intersect
check intersect left sub-tree
check intersect right sub-tree
13




Hierarchical Bounding Volumes

- Still need to check ray against every object --- O(n)

- Use tree data structure
— Larger bounding volumes contain smaller ones

Check intersect root
If intersect
check intersect left sub-tree
check intersect right sub-tree
14




Hierarchical Bounding Volumes

- Still need to check ray against every object --- O(n)

- Use tree data structure
— Larger bounding volumes contain smaller ones

Check intersect root
If intersect
check intersect left sub-tree
check intersect right sub-tree
15




Hierarchical Bounding Volumes

- Still need to check ray against every object --- O(n)

- Use tree data structure
— Larger bounding volumes contain smaller ones

Check intersect root ™
If intersect
check intersect left sub-tree
check intersect right sub-tree
16




Hierarchical Bounding Volumes

- Many ways to build a tree for the hierarchy

- Works well:
— Binary

— Roughly balanced
— Boxes of sibling trees not overlap too much




Hierarchical Bounding Volumes

- Sort the surfaces along the axis before dividing into two boxes
- Carefully choose axis each time
» Choose axis that minimizes sum of volumes




Hierarchical Bounding Volumes

- Sort the surfaces along the axis before dividing into two boxes
- Carefully choose axis each time
» Choose axis that minimizes sum of volumes




Hierarchical Bounding Volumes

» Works well if you use good (appropriate) bounding
volumes and hierarchy

» Should give O(log n) rather than O(n) complexity
(n=# of objects)

- Can have multiple classes of bounding volumes and pick
the best for each enclosed object




Hierarchical bounding volumes
Spatial Subdivision

» Grids

* Octrees

- K-d trees and BSP trees




3D Spatial Subdivision

» Bounding volumes enclose the objects (object-
centric)

» Instead could divide up the space—the further
an object is from the ray the less time we want

to spend checking it
— @rids
— QOctrees
— K-d trees and BSP trees




Grids

+ Data structure: a 3-D array of cells (voxels) that tile space
— Each cell points to list of all surfaces intersecting that cell

* Intersection testing:
— Start tracing at cell where ray begins
— Step from cell to cell, searching for the first intersection point
— At each cell, test for intersection with all surfaces pointed to by that cell
— If there is an intersection, return the closest one

px




Grids
« Cells are traversed in an incremental fashion

» Hits of sets of parallel lines are very regular




More on Grids

+ Be Careful! The fact that a ray passes through a cell and hits an
object doesn’t mean the ray hit that object in that cell

+ Optimization: cache intersection point and ray id in “mailbox”
associated with each object

- Step from cell to cell

+ Get object intersecting cell

* Find closest intersection

* |f found intersection --- done




More on Grids

+ @Grids are a poor choice when the world is nonhomogeneous
(clumpy)

— many polygons clustered in a small space

* How many cells to use?

— too few = many objects per cell = slow
—too many = many empty cells to step through = slow

* Non-uniform spatial subdivision is better!




Octrees

+ Quadtree is the 2-D generalization of binary tree
— node (cell) is a square
— recursively split into four equal sub-squares
— stop when leaves get “simple enough”




Octrees

+ Quadtree is the 2-D generalization of binary tree
— node (cell) is a square

— recursively split into four equal sub-squares
— stop when leaves get “simple enough”

Octree is the 3-D generalization of quadtree

— node (cell) is a cube, recursively split into eight equal sub-cubes
— for ray tracing:
= stop subdivision based on number of objects

* |nternal nodes store pointers to children, leaves store list of surfaces
— more expensive to traverse than a grid

— but an octree adapts to non-homogeneous scenes better

trace(cell, ray) { // returns object hit or NONE
1f cell is leaf, return closest({objects in cell(cell))
for child cells pierced by ray, in order // 1 to 4 of these
obj = trace(child, ray)
1f obj!=NONE return obj
return NONE




Which Data Structure is Best for Ray Tracing?

Grids

Easy to implement
Require a lot of memory

Poor results for inhomogeneous scenes

Octrees

Better on most scenes (more adaptive)

Spatial subdivision expensive for animations
Hierarchical bounding volumes
Better for dynamic scenes

Natural for hierarchical objects




k-d Trees and BSP Trees

Relax the rules for quadtrees and octrees:

k-dimensional (k-d) tree
— don’t always split at midpoint
— split only one dimension at a time (i.e. xor yor 2)

binary space partitioning (BSP) tree
— permit splits with any line
— In 2-D space split with lines (most of our examples)
— 3-D space split with planes
— K-D space split with k-1 dimensional hyperplanes

useful for Painter’s algorithm (hidden surface
removal)




Painters Algorithm

Hidden Surface Elimination




Painters Algorithm

* Need to sort objects back to front
» Order depends on the view point
- Partition objects using BSP tree

 View Independent




Building a BSP Tree

+ Let’s look at simple example with 3 line segments
- Arrowheads are to show left and right sides of lines.

« Using line 1 or 2 as root is easy.
- (examples from http://www.geocities.com/SiliconValley/2151/bsp.html)

a BSP tree
using 2 as root

< Viewpoint




Drawing Objects

« Traverse the tree from the root

+ If view point is on the left of the line --- traverse right sub-tree first
+ Draw the root

+ Traverse left sub-tree

a BSP tree
using 2 as root

< Viewpoint




Building the Tree 2

Using line 3 for the root requires a split

D

Line 1

Awe 22C
Line 3
/ wne 2b :

s N

</ Viewpoint




Triangles

Use plane containing triangle T, to split the space
If view point is on one side of the plane draw polygons on the other side first
T, does not intersect plane of T,

plane containing 7,




Triangles

Use plane containing triangle T, to split the space
If view point is on one side of the plane draw polygons on the other side first
T, does not intersect plane of T,

plane containing 74




Triangles

Split Triangle




Building a Good Tree - the tricky part

* A naive partitioning of n polygons will yield O(n?)
polygons because of splitting!

» Algorithms exist to find partitionings that produce O(n?).

— For example, try all remaining polygons and add the one which causes
the fewest splits

— Fewer splits -> larger polygons -> better polygon fill efficiency

» Also, we want a balanced tree.




Painter’s Algorithm with BSP trees

« Build the tree

— Involves splitting some polygons
— Slow, but done only once for static scene

» Correct traversal lets you draw in back-to-front or front-
to-back order for any viewpoint
— Order is view-dependent

— Pre-compute tree once
— Do the “sort” on the fly

» WIill not work for changing scenes




Drawing a BSP Tree

+ Each polygon has a set of coefficients:

Ax+By+Cz+D
* Plug the coordinates of the viewpoint in and see:

>0 : front side
<0 : back facing
=0 : on plane of polygon
« Back-to-front draw: inorder traversal, do farther child first

* Front-to-back draw: inorder traversal, do near child first

front to back(tree, viewpt) {
if (tree == null) return;
if (positive side of (root(tree), viewpt)) {
front to back(positive branch(tree, viewpt);

display polygon(root(tree));
front to back(negative branch(tree, viewpt);

}

else { ..draw negative branch first..}

41




Drawing Back to Front

» Use Painter’s Algorithm for hidden surface removal

Steps:
—Draw objects on far side of line 3

» Draw objects on far side of
line 2a

—Draw line 1
»Draw line 2a
—Draw line 3
—Draw objects on near side of line 3
»Draw line 2b

Line 2b

N/ Viewpoint




BSP Tree construction

« KD Tree construction




Real-time and Interactive Ray Tracing

The OpenRT Real-Time Ray-Tracing Project

» Interactive ray tracing via space subdivision

» Interactive ray tracing with good hardware




