
15-456 Computational Geometry, Spring 2013

Homework 4 Due: 22 March 2013

Guidelines: Please justify all answers in a succienct (yet complete) manner. In partic-
ular, when presenting an algorithm the code if any should be presented at a high level. A
full algorithm will contain the input, the output, and any loop invariants.

Question Points Score

1 30

2 15

3 30

4 30

5 20

Total: 125

1.(30) Staircases

Let P be a set of n points in the plane. A point p ∈ P is Pareto-optimal if no other point
in P is both above and to the right of p. The sorted sequence of Pareto-optimal points
describes a staircase with all the points in P below and to the left. The staircase layers
of P are defined recursively as follows. The first staircase layer is just the staircase; for
all k > 1, the kth staircase layer is the staircase of P after the points in the first k − 1
staircase layers have been deleted.

Computational Geometry Homework 1 (due February 15) Spring 2008

General Instructions: Please typeset your homework using LATEX, with each problem starting on a new page. See
the course web site for advice on producing and importing figures. ?Stars indicate problems that I don’t already
know how to solve; these problems may or may not be open.

I strongly encourage you to work together, but each student must turn in their own solutions. Similarly,
you may use any resource at your disposal—human, printed, or electronic—but you must not copy anything
verbatim, and you must cite every source you use, including the other students you work with. In other words,
follow the same standards of scholarship you would use for a research paper.

1. (a) Describe an algorithm to compute the intersection of two convex n-gons in O(n) time.
(b) Describe an algorithm to construct the convex hull of two convex n-gons in O(n) time. [Hint:

Use part (a).]
(c) Describe and analyze ‘merge-hull’!

2. A simple polygon is a circular sequence of line segments joined end-to-end with no other inter-
sections.

(a) The “three-penny algorithm” from Graham’s scan computes the convex hull of some simple
polygons, but not all. Describe a simple polygon P for which the three-penny algorithm fails
to compute the convex hull.

(b) Prove that Graham’s scan (either the version described in class or the version described in
the lecture notes) computes the convex hull of any set of points!

(c) Describe an algorithm to construct the convex hull of any simple n-vertex polygon in O(n)
time. [Hint: This is harder than it looks!]

3. Let P be a set of n points in the plane. A point p in P is Pareto-optimal if no other point in P is both
above and to the right of p. The sorted sequence of Pareto-optimal points describes a staircase
with all the points in P below and to the left. The staircase layers of P are defined recursively as
follows. The first staircase layer is just the staircase; for all k > 1, the kth staircase layer is the
staircase of P after the points in the first k� 1 staircase layers have been deleted.
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A set of points with five staircase layers.

(a) Describe an algorithm to compute the staircase of P in O(n log p) time, where p is the
number of Pareto-optimal points. [Hint: There are at least two different ways to do this.]

(b) Describe and analyze an algorithm to compute the staircase layers of P in O(n log n) time.
Your algorithm should label each point with an integer indicating which staircase layer
contains it, as shown in the figure above.

Assume that no two points in P have the same x- or y-coordinates.

1

Figure 1: set of points with five staircase layers.

1. Describe and analyze an algorithm to compute the staircase layers of P in O(n log n)
time. Your algorithm should label each point with an integer indicating which
staircase layer contains it, as shown in the Figure 1 above.



2. Describe and analyze an algorithm to compute the staircase of P in O(n log p)
time, where p is the number of Pareto-optimal points. [Hint: There are at least
two different ways to do this.]

2.(15) Lifting Edge Flips Consider a convex quadrilateral abcd in R2. The two diagonals of
abcd are ac and bd. WLOG, assume that the triangulation of the four points obtained
by the quadrilateral and the edge ac is the Delaunay triangulation of the four points.
If we lift the points a, b, c, and d to the paraboloid (x, y, x2 + y2), then the four points
(since not cocircular) are the vertices of a non-degenerate tetrehedron in R3.

The two edges ac and bd intersect in the plane at a point p, but the corresponding edges
connecting the lifted points do not intersect. Above the point p, which line is lower? Be
sure to explain your reasoning.

3.(30) Farthest Point Voronoi Diagram (30 = 5 + 10 + 10 + 5) Given a point set P of n
points, the farthest point Voronoi diagram Vn−1(P ) partitions the domain into regions
with the common farthest point(s) in the set P (as opposed to the same closest point
as is the case in the Voronoi diagram). This decomposition has faces (2-dimensional
regions with a unique farthest point), edges (1-dimentional regions with exactly two
farthest points in the set P ), and vertices (a discrete set of points with more than two
farthest points).

(a) Draw an example of the farthest point Voronoi diagram with 9 sites, 5 of which are
on the convex hull.

(b) Prove that the faces of Vn−1(P ) are convex.

(c) Prove that the only sites that have faces in Vn−1(P ) are on the boundary of the
convex closure of P .

(d) Give an O(n log n) algorithm to compute the farthest point Voronoi diagram.

4.(30) Simple Paths and Convex Hull

Suppose that P = {p1, . . . , pn} is a set of points in the plane. We say the the sequences
of distinct points Path = (p1, . . . , pk) is a simple path if the line segments li = [pipi+1]
are disjoint except for li ∩ li+1 = pi+1. We may also allow p1 = pk and in this case
lk−1 ∩ l1 = pk.

In the following questions we shall investigate the relation between finding a simple path
of a set of points and finding their convex hull.

1. Design an algorithm for finding a simple path through all points in P . Make your
algorithm as time efficient as possible.

2. In class we showed that computing the convex hull of n points in a comparison
basedN - model requires Ω(n log n) time. Show that given a simple path for these
points one can find the convex hull in O(n) time.

HINT:
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The idea is to run a variant of incremental convex hull where we add the points
in the order they appear on the path. Suppose we are give a simple path Path =
(p1, . . . , pn) on n distinct points and for simplicity no three are collinear. We start
by constructing the triangle from the first three points and storing it as a doubly
linked list of edges and recording which vertex is connected to the remain points
on the path.

Let I = {i | pi ∈ CH(p1, . . . , pi)} We will for each i ∈ I incrementally compute the
convex hull of (p1, . . . , pi). Make sure your algorithm handles the case when the
point pi+1 is interior to CH(p1, . . . , pi).

Use amortized analysis to show that your algorithm runs in O(n) time.

3. Show that in general any comparison based algorithm that finds a simple path of
the points in P requires Ω(n log n) comparisons.

5.(20) Compute clustering radius (20 = 10 + 10) Let C and P be two given sets of points
in the plane, such that k = |C| and n = |P |.
Let r = maxp∈P minc∈C ||c − p|| be the covering radius of P by C (i.e., if we place a
disk of radius r around each point of C, all those disks cover the points of P ). The goal
of this problem is to approximate r which we shall do in stages.

(a) Give an O(n+ k) time algorithm which computes the following predicate:

Test(α) =


yes if r < α

p ∈ P such that ||p, C|| > r if 2
√

2α < r
either case above otherwise

(b) Give an O(n+k log n) expected time algorithm that outputs a number α, such that
r ≤ α ≤ 10r.
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