(> eomeTric /4P/" 1o &1 Yron A /ﬁar; £l 1o
Saniel Har -peled

CHAPTER 1

The Power of Grids — Closest Pair and Smallest Enclosing
Disk

In this chapter, we are going to discuss two basic geometric algorithms. The first one
computes the closest pair among a set of n points in linear time. This is a beautiful and
surprising result that exposes the computational power of using grids for geometric com-
putation. Next, we discuss a simple algorithm for approximating the smallest enclosing
ball that contains k points of the input. This at first looks like a bizarre problem but turns
out to be a key ingredient to our later discussion.

1.1. Preliminaries

For a real positive number ¢ and a point p = (x,y) in R?, define G,(p) to be the grid
point (Lx/a] a, |y/a] @). We call a the width or sidelength of the grid G,. Observe that G,
partitions the plane into square regions, which we call grid cells. Formally, for any i, j € Z,
the intersection of the halfplanes x > ai, x < a(i+ 1),y > @j,and y < a(j + 1) is said to
be a grid cell. Further we define a grid cluster as a block of 3 x 3 contiguous grid cells.

Note that every grid cell O of G, has a unique ID; indeed, let p = (x,y) be any point
in O, and consider the pair of integer numbers idy = id(p) = (lx/a], |y/a]). Clearly,
only points inside O are going to be mapped to idy. We can use this to store a set P of
points inside a grid efficiently. Indeed, given a point p, compute its id(p). We associate
with each unique id a data-structure (e.g., a linked list) that stores all the points of P falling
into this grid cell (of course, we do not maintain such data-structures for grid cells which
are empty). So, once we have computed id(p), we fetch the data-structure associated with
this cell by using hashing. Namely, we store pointers to all those data-structures in a hash
table, where each such data-structure is indexed by its unique id. Since the ids are integer
numbers, we can do the hashing in constant time.

Assumprion 1.1, Throughout the discourse, we assume that every hashing operation
takes (worst case) constant time. This is quite a reasonable assumption when true random-
ness is available (using for example perfect hashing [CLRS01]).

AssumptioN 1.2. Our computation model is the unit cost RAM model, where every
operation on real numbers takes constant time, including log and |-] operations. We will
(mostly) ignore numerical issues and assume exact computation.

Dermvirion 1.3, For a point set P and a parameter e, the parfition of P into subsets
by the grid G, is denoted by G,(P). More formally, two points p,q € P belong to the
same set in the partition G,(P) if both points are being mapped to the same grid point or
equivalently belong to the same grid cell; that is, id(p) = id(q).

1.2. Closest pair
We are interested in solving the following problem:

1

2 1. THE POWER OF GRIDS - CLOSEST PAIR AND SMALLEST ENCLOSING DISK

ProsLem 1.4. Given a set P of n points in the plane, find the pair of points closest to
each other. Formally, return the pair of points realizing CP(P) = imin o llp = qll.
p#q, p.ge

The following is an easy standard packing argument that underlines, under various
disguises, many algorithms in computational geometry.

Lemma 1.5. Let P be a set of points contained inside a
square O, such that the sidelength of O is a = CP(P). Then
IP| < 4.

Proor. Partition O into four equal squares O;,...,04,
and observe that each of these squares has diameter V2a/2
< a, and as such each can contain at most one point of
P; that is, the disk of radius @ centered at a point p € P
completely covers the subsquare containing it; see the figure
on the right.

Note that the set P can have four points if it is the four
corners of O. @

Lemma 1.6. Given a set P of n points in the plane and a distance «, one can verify in
linear time whether CP(P) < @, CP(P) = a, or CP(P) > a.

Proor. Indeed, store the points of P in the grid G,. For every non-empty grid cell,
we maintain a linked list of the points inside it. Thus, adding a new point p takes constant
time. Specifically, compute id(p), check if id(p) already appears in the hash table, if not,
create a new linked list for the cell with this ID number, and store p in it. If a linked list
already exists for id(p), just add p to it. This takes O(n) time overall.

Now, if any grid cell in G,(P) contains more than, say, 4 points of P, then it must be
that the CP(P) < a, by Lemma 1.5.

| | I |

Thus, when we insert a point p, we can fetch | | ; I :

all the points of P that were already inserted in r~--r~-~-r-==-----r~
the cell of p and the 8 adjacent cells (i.e., all the : : | !
points stored in the cluster of p); that is, these are | i 'L |
the cells of the grid G, that intersects the disk | | / r) A=y :_ -
D = disk(p, @) centered at p with radius a; see | 1f i |

; ; i [I
the figure on the right. If there is a point closer _ _ _ _ :_.a.._ — :_ —_— :._ =
to p than « that was already inserted, then it must | | N GRG

be stored in one of these 9 cells (since it must be | : :
inside D). Now, each one of those cells mustcon- r—---r -~ -1 -
tain at most 4 points of P by Lemma 1.5 (oth- | : i
erwise, we would already have stopped since the | [I
CP(-) of the inserted points is smaller than «). Let
S be the set of all those points, and observe that |S| < 9 -4 = O(1). Thus, we can compute,
by brute force, the closest point to p in §. This takes O(1) time. If d(p, S) < a, we stop;
otherwise, we continue to the next point.

Overall, this takes at most linear time.

As for correctness, observe that the algorithm returns ‘CP(P) < @’ only after finding
a pair of points of P with distance smaller than @. So, assume that p and q are the pair of
points of P realizing the closest pair and that [[p — gl| = CP(P) < a. Clearly, when the later
point (say p) is being inserted, the set S would contain g, and as such the algorithm would

1.2. CLOSEST PAIR 3

stop and return ‘CP(P) < «’. Similar argumentation works for the case that CP(P) = a.
Thus if the algorithm returns ‘CP(P) > a’, it must be that CP(P) is not smaller than @ or
equal to it. Namely, it must be larger. Thus, the algorithm output is correct. o

Remark 1.7. Assume that CP(P \ {p}) = a, but CP(P) < a. Furthermore, assume that
we use Lemma 1.6 on P, where p € P is the last point to be inserted. When p is being
inserted, not only do we discover that CP(P) < «, but in fact, by checking the distance of
p to all the points stored in its cluster, we can compute the closest point to p in P \ {p} and
denote this point by g. Clearly, pq is the closest pair in P, and this last insertion still takes
only constant time.

Slow algorithm. Lemma 1.6 provides a natural way of computing CP(P). Indeed,
permute the points of P in an arbitrary fashion, and let P = (py,...,p,). Next, let ;| =
CPUpi,...,Pi-1}). We can check if @; < ;-1 by using the algorithm of Lemma 1.6 on P;
and a;_;. In fact, if @; < @;-1, the algorithm of Lemma 1.6 would return ‘CP(P;) < a;_’
and the two points of P; realizing a;.

So, consider the “good” case, where @; = @;_;; that is, the length of the shortest pair
does not change when p; is being inserted. In this case, we do not need to rebuild the
data-structure of Lemma 1.6 to store P; = (pi,...,p;). We can just reuse the data-structure
from the previous iteration that was used by P;_, by inserting p; into it. Thus, inserting a
single point takes constant time, as long as the closest pair does not change.

Things become problematic when a; < @;-;, because then we need to rebuild the grid
data-structure and reinsert all the points of P; = {p, ..., p;} into the new grid G, (P;). This
takes O(i) time.

In the end of this process, we output the number «,, together with the two points of P
that realize the closest pair.

Ogservation 1.8. If the closest pair distance, in the sequence «y,...,a,, changes only
t times, then the running time of our algorithm would be O(nt + n). Naturally, t might be
Q(n), so this algorithm might take quadratic time in the worst case.

Linear time algorithm. Surprisingly”, we can speed up the above algorithm to have
linear running time by spicing it up using randomization.

We pick a random permutation of the points of P and let (p;,...,p,) be this per-
mutation. Let a» = ||p; — p2ll, and start inserting the points into the data-structure of
Lemma 1.6. We will keep the invariant that a; would be the closest pair distance in the set
P, fori=2,...,n.

In the ith iteration, if @; = a;_;, then this insertion takes constant time. If ; < @,
then we know what is the new closest pair distance «; (see Remark 1.7), rebuild the grid,
and reinsert the i points of P; from scratch into the grid G,,. This rebuilding of G,,(P;)
takes O(i) time.

Finally, the algorithm returns the number a, and the two points of P, realizing it, as
the closest pair in P.

Lemma 1.9. Let t be the number of different values in the sequence a1, @3, . .., a,. Then
E[f] = O(logn). As such, in expectation, the above algorithm rebuilds the grid O(logn)
times.

®Sm'prise in the eyes of the beholder. The reader might not be surprised at all and might be mildly annoyed
by the whole affair. In this case, the reader should read any occurrence of “surprisingly” in the text as being
“mildly annoying”.

4 1. THE POWER OF GRIDS — CLOSEST PAIR AND SMALLEST ENCLOSING DISK

Prook. For i = 3, let X; be an indicator variable that is one if and only if a; < ;.
Observe that E[X;] = Pr[X; = 1] (as X; is an indicator variable) and t = }}}_; X;.

To bound Pr[X; = 1] = Prla; < a;_,], we (conceptually) fix the points of P; and ran-
domly permute them. A point q € P; is critical if CP(P; \ {q}) > CP(P;). If there are no
critical points, then @;_; = a@; and then Pr{X; = 1] = O (this happens, for example, if there
are two pairs of points realizing the closest distance in P;). If there is one critical point,
then Pr[X; = 1] = 1/i, as this is the probability that this critical point would be the last
point in the random permutation of P;.

Assume there are two critical points and let p,q be this unique pair of points of P;
realizing CP(P;). The quantity a; is smaller than «;_, only if either p or q is p;. The
probability for that is 2/i (i.e., the probability in a random permutation of i objects that one
of two marked objects would be the last element in the permutation).

Observe that there cannot be more than two critical points. Indeed, if p and q are
two points that realize the closest distance, then if there is a third critical point s, then
CP(P; \ {s}) = |lp — gl|, and hence the point s is not critical.

Thus, Pr[X; = 1] = Prlo; < @;_1] € 2/i, and by linearity of expectations, we have that
Elf] = E[Z?zg Xx‘] = Y EIX] < 23 2/i = O(logn). -

Lemma 1.9 implies that, in expectation, the algorithm rebuilds the grid O(log n) times.
By Observation 1.8, the running time of this algorithm, in expectation, is O(n log n). How-
ever, we can do better than that. Intuitively, rebuilding the grid in early iterations of the

algorithm is cheap, and only late rebuilds (when i = Q(n)) are expensive, but the number
of such expensive rebuilds is small (in fact, in expectation it is a constant).

Tueorem 1.10. For set P of n points in the plane, one can compute the closest pair of
P in expected linear time.

Proor. The algorithm is described above. As above, let X; be the indicator variable
which is 1 if @; # a;-;, and 0 otherwise. Clearly, the running time is proportional to

n
R=1 +Z(1 o
i=3
Thus, the expected running time is proportional to

gmiE[x,-]-fgmif-Pr[X,-: 1]
i=3 i=3

E[R] =E

1+) (1+X;-)
i=3

n
. 2
£n+Zz-733n,
=

by linearity of expectation and since E[X;] = Pr[X; = 1] and since Pr[X; = 1] < 2/i (as
shown in the proof of Lemma 1.9). Thus, the expected running time of the algorithm is
O(E[R]) = O(n). @

Theorem 1.10 is a surprising result, since it implies that uniqueness (i.e., deciding if
n real numbers are all distinct) can be solved in linear time. Indeed, compute the distance
of the closest pair of the given numbers (think about the numbers as points on the x-axis).
If this distance is zero, then clearly they are not all unique.

However, there is a lower bound of (X(nlogn) on the running time to solve unique-
ness, using the comparison model. This “reality dysfunction™ can be easily explained once
one realizes that the computation model of Theorem 1.10 is considerably stronger, using
hashing, randomization, and the floor function.

