Mesh Generation

Goal: Partition domain into simplices.

∅

Simplex: vertex, segment, triangle, tetrahedron

Partition: Intersection of 2 simplices in a simplex

Conforming to input

Well-shaped simplices

a) no small angles ≥ 0°

b) no large angles ≥ 180°

Small number of simplices (optimal size)
Repeat Ratio

\[A(a, b, c) = \frac{\text{longest-side}}{\text{alt}} \]

\[R(a, b, c) = \frac{\text{longest-side}}{\text{shortest-side}} \]

\[\frac{1}{\text{Smallest-angle}} \]

\[\frac{1}{180^\circ - \text{largest-angle}} \]

radius-edge ratio = \(\frac{r}{e} \)

\[r = \text{radius of circum sphere} \]

\[e = \text{shortest edge} \]
Mesh Generation Methods

1) Quadtree (today)
2) Delaunay Refinement (to do)
3) Advancing Front
4) Ball-Packing
5) Voronoi Refinement

In 2D our input will be PSLG.
Simplex & Simplicial Complex

Def: \(\overline{P_0, \ldots, P_k} \in \mathbb{R}^d \) are affinely independent of dimension \(k \).

If \(P_i - P_0, \ldots, P_k - P_0 \) are independent.

Def: If \(P_0, \ldots, P_k \) are a-ind then \(\operatorname{CC}(P_0, \ldots, P_k) \) is a \(k \)-simplex & \(\forall \{P_0, \ldots, P_k\} \subseteq \operatorname{CC}(S) \) is a sub-simplex

Def: A set \(K \) of simplices in \(\mathbb{R}^d \) is a Simplicial Complex if:

1) \(K \) is closed under sub-simplex

2) \(S, T \in K \) then \(S \cap T \) sub-simplex of \(T \)

Def: \(\dim(K) = \max \{ \dim S \mid S \in K \} \)
Note: $PSLG$ is a 1-dim simplicial complex in \mathbb{R}^2.

K & K' are simplicial complexes.

Def: K' is a refinement of K if

$\forall s \in K \text{ of dim } k \exists s_1, \ldots, s_k \in K' \text{ of dim } k$

$s \supseteq \bigcup_{i=1}^{k} s_i$

Input: Simplicial complex K & Domain \mathcal{N}

$s \subseteq K \Rightarrow s \subseteq \mathcal{N}$

Output: refinement K' of K s.t.

$\bigcup_{s \in K'} s = \mathcal{N}$
Quad-Tree Meshing

Input: set \(X \subseteq \mathbb{R}^2 \) of points \(X \subseteq B \) (box) \(|X| = n \)

Def QT is a tree of nested square boxes.

The children of box \(b \) are either:

1) empty (leaf box)
2) 4 children of half the size (split of \(b \))

Neighbors: 4 direct neighbors

8 extended neighbors
Def: QT is balanced if every leaf box has no side containing more than one interior node.

[Diagrams showing examples of OK and not OK balanced conditions]
Build-QT(X,B)

Init: QT T = (X,B)

1) While 3 leaf box \((X',b)\) st. b is "crowded"
 split b and assign \(X'\) to new boxes,

2) Balance T by splitting

3) Split all boxes containing a point until it
 has 8 extended neighbors (leaf boxes)
Def: A box \(b \) is crowded if \(\exists x \in b \) and one of the following holds:

1. \(\exists y \neq x \in b \)
2. \(\exists y \in X \) st \(\text{dist}(x, y) \leq 2\sqrt{2} \cdot \text{side length}(b) \)
3. An extended neighbor of \(b \) in split.

Warping:

\(x \in b \) by \(y \) closest corner of \(b \) this warp \(y \).

\(b \) empty & not warped:

\(\Rightarrow \)
Cost to Balance

Thm. T is a QT & T' in its balanced version then $|T'| = O(|T|)$, $|T'| = \# \text{ boxes}$

Prf

Note T is a proper k-ary tree

Note A proper k-ary tree with i internal nodes has size $k^i + 1$ (induct)

Def A box of T or T' is old

Claim A new internal box has an extended neighbor which is old.

Proof by contradiction
Let b be the smallest internal new box with no old ext neigh.

$b_{\text{internal}} \Rightarrow \text{a side of } b \text{ is split twice}$

e.g.

b' is new with no old neigh. \text{ contr.}

\[
\#(T') \leq 8 \cdot n \quad (9n)?
\]

\[
\#(T') \leq 4 \cdot \#(\text{int}(T') +) \leq 32n+1
\]

\[\text{Thm} \quad \text{Balanced QT can be computed in } O(dn)\]

\[\text{time } d = \text{depth}\]