2D only

Input: PSLG all angles > 60° (G)

Output:
1) 2D simplicial complex
2) A refinement of the PSLG
3) Delaunay
4) no small angle
5) constant times opt size

Def \(\text{lfs}(x) = \text{dist to and nearest disjoint feature} \)

Def \(f: \mathbb{R}^d \to \mathbb{R} \) is \(\alpha \)-Lipschitz if \(\forall p, q \in \mathbb{R}^d \)

\[|f(p) - f(q)| \leq \alpha \text{dist}(p, q) \]

Claim \(\text{lfs} \) is 1-Lipschitz i.e.

\[\text{lfs}(p) \leq \text{lfs}(q) + \text{dist}(p, q) \]
Algorithm

Def Circumball of a simplex is min radius ball B with vertices on DB.

Def p encroaches simplex S if $p \in \text{Int}(\text{Circumball}(S))$

Def S' encroaches on S if Circumcenter(S') $\in \text{Int}(\text{Circumball}(S))$

Def Segment is a subsegment of an edge of G.

Delaunay Refinement (G) (Overview)

1) Add a bounding box to G

2) Compute Delaunay of $V(G) + \text{Box}$

3) While

 1) a segment is encroached add circum-center

 2) a Δ is skinny add circum-center.
Algorithm Details

Subroutine: Split(segs, S)

1) Add circumcenter of s to V & update DT(V)
2) Remove s from S
3) Add halves of s to S.
Delaunay Refinement \((\text{PSLG } G, \text{ angle } \alpha \text{ or radius-edge } \rho)\)

Init

1) Add bounding box to \(G \)
2) \(S = \text{edges}(G) \)
3) \(V = \text{vertices}(G) \)
4) \(T = \text{DT}(V) \)

While \(\exists \text{encroached seg or skinny tri do} \)

1) **While** \(\exists \text{seg(s) encroached) split seg(s) do} \)
2) **If** \(t \text{ skinny (radius-edge) } \rho \text{ then do} \)
 - **If** \(t \text{ encroaches a seg } S \text{ then do} \)
 - **split seg(s)**
 - **else split tri(t)**

Return \(\text{DT}(V) \)
Def \[NN_t(P) \equiv \text{nearest vertex in } V \text{ at last time } P \text{ was considered for insertion before } t. \]

e.g. at step (x) \(P \in \text{Circumcentra}(t) \) was considered but may not have been added.

Def \[\text{Containing Dimension of } P \equiv \min \text{ dim feature containing } P. \]

e.g. \(P \) is an input point then \(CD(P) = 0 \)

- \(P \) interior to an edge \(CD(P) = 1 \)

- \(P \) vertex \(CD(P) = 2 \)

Lemma \[\exists \text{ constants } C_\varepsilon \& C_\tau \text{ depending only on } \varepsilon \text{ s.t. } \forall t \]

1) If \(CD(P) = 0 \) then \(lfs(P) \leq NN_t(P) \)

2) If \(CD(P) = 1 \) then \(lfs(P) \leq C_\varepsilon NN_t(P) \)

3) If \(CD(P) = 2 \) then \(lfs(P) \leq C_\tau NN_t(P) \)
Induction on execution time t.

Assume t and show $t+1$

Case $CD(p) = 0$ (p will only be considered once)

$$\text{hs}_G(p) \leq \text{hs}_V(p) \leq NN_t(p) = NN_{t+1}(p)$$

Case $CD(p) = 1$

Let $p \in E_p$ (input edge) & p = circum center of segment S_p

$\forall p \in S_p \subset E_p$

S_p must have been encroached by some point a

Pick $a \in \text{Ball}(S_p)$ as follows:

1) $a \in \text{Ball}(S_p)$ at time $\text{splitseg}(S_p)$

 set a to closest such point to p.
else let $a \in B(S_p)$ be circumcenter of skinny tri that yielded to p.

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$

$$\text{let } a \in B(S_p) \text{ be circumcenter of skinny tri that yielded to } p.$$

Subcase $CD(a) = 0$
Subcase \(\text{CD}(a) = 2 \)

By induction \(\ellfs(a) \leq C_t \ NN_t(a) \leq C_t r' \)

1) \(\NN_t(p) = r \) (will yield to \(S_p \))
2) \(a \in B(p, r) \) & \(x, y \in B(a, r') \) \(\Rightarrow r' \leq \sqrt{2} r \)

\(\ellfs(p) \leq \ellfs(a) + \text{dist}(p, a) \leq C_t r' + r \)
\(\leq C_t \sqrt{2} r + r \)
\(\leq (\sqrt{2} C_t + 1) \ NN_{t+1}(p) \)

We need \(1 + \sqrt{2} C_t \leq C_e \)
Case \(CD(p) = 2 \)

WLOG \(a \) added before \(b \).

Subcase \(CD(b) = 0 \)

\[\text{ltS}(p) = r = NN_{th}(p) \]

\[1 \leq C_t \]

Note \(CD(b) = 0 \)

\[\Rightarrow CD(a) = 0 \]

\[\Rightarrow \text{ltS}(p) = r \]

Subcase \(CD(b) = 1 \)

(induct) \(\text{ltS}(b) \leq C_e NN_{t}(b) \leq C_e \text{dist}(b, a) \)

radio-edge \(e \leq \frac{r}{\rho} \) i.e. \(e \leq \frac{r}{\rho} \)

\[C_e \frac{r}{\rho} \]

\[e \leq \frac{r}{\rho} \]

\[\text{ltS}(p) \leq \text{ltS}(b) + \text{dist}(p, b) = \text{ltS}(b) + r \]

\[\leq C_e \text{dist}(b, a) + r \]

\[< C_e \frac{r}{\rho} + r = (C_e \frac{r}{\rho} + 1) r \]

\[= (C_e \frac{r}{\rho} + 1) NN_{th}(p) \]

need \((C_e \frac{r}{\rho} + 1) \leq C_t \)
Subcase, CD(b) = 2

Same as last case but \(C_e \) is \(C_t \)

i.e. \((C_t \bar{\rho} + 1) \leq C_t \)

\[
\frac{1}{1-\rho} \leq C_t \quad \text{or} \quad \frac{\rho}{\rho-1} \leq C_t
\]

Our list of needed conditions for \(\rho \)

1. \(\frac{1}{2} \leq C_e \)
2. \(\frac{\rho}{\rho-1} \leq C_t \)
3. \(1 + \sqrt{2} C_t \leq C_e \)
4. \(1 + \bar{\rho} C_e \leq C_t \)
\(C_t = \frac{C_e}{\sqrt{2}} - \frac{1}{\sqrt{2}} \sqrt{\frac{1}{2}} \)

\(C_t = \bar{p} \left(C_e + 1 \right) \) \text{ slope } \bar{p} \Rightarrow \bar{p} \leq \frac{1}{\sqrt{2}}

on \bar{p} = \sqrt{2}
\[p = \frac{\sqrt{2}}{e} \geq \sqrt{2} \]

\[\frac{\frac{\sqrt{2}}{r}}{r} = \sin \alpha \]

\[\left(\frac{1}{2\sqrt{2}} \right) = \sin \alpha \]

\[\Rightarrow \alpha \approx \sin^{-1} \left(\frac{1}{2\sqrt{2}} \right) \approx 20^0 \]
Thm: \(\text{Output then } \text{lfs}(p) \leq (c_e+1) \text{NN}_{\text{output}}(p) \)

pf:

Let \(q \) be NN of \(p \) in output i.e. \(\text{NN}_{\text{output}}(p) = \text{dist}(p, q) \)

Case 1: \(p \) added after \(q \) then \(\text{NN}_{+}(p) = 1 \times \text{NN}_{\text{output}}(p) \)

\[\text{lfs}(p) \leq c_e \text{NN}_{+}(p) = c_e \text{NN}_{\text{output}}(p) \]

Case 2: \(q \) added after \(p \).

\[\text{NN}_{+}(q) \leq \text{dist}(p, q) \]

\[\text{lfs}(p) \leq \text{lfs}(q) + \text{dist}(p, q) \leq c_e \text{NN}_{+}(q) + \text{dist}(p, q) \]

\[\leq (c_e+1) \text{dist}(p, q) \]

\[= (c_e+1) \text{NN}_{\text{output}}(p) \]
Thm: DR generates a mesh with at most
\[C \int_{\Box x} \frac{1}{\text{afs}(x)} \, dA \] vertices.

Proof: Let \(r_p = \frac{\text{afs}(p)}{2(C_\text{c+1})} \).

Note: Balls \(B(p, r_p) \) are disjoint.

Note: \(\max_{x \in B_p} \text{afs}(x) \leq \text{afs}(p) + r_p \)

\[\int_{B_p} \frac{1}{\text{afs}(x)} \, dA \geq \text{Area}(B_p) \frac{1}{(\text{afs}(p) + r_p)^2} = \frac{\pi r_p^2}{(2(C_\text{c+1})r_p + r_p)^2} \]

\[= \frac{\pi}{(2(C_\text{c+3})^2) \equiv C'} \]
\[
\int_{\text{Box}} \frac{1}{\mathcal{A}^2(x)} \, dA = \sum_{p \in V(D)} \frac{1}{4} \int_{B_p} \frac{1}{\mathcal{A}^2(x)} \, dA
\]
\[
\geq \sum_{p \in V} \frac{1}{4} c' = \frac{1}{4} c' |V|
\]