The Convex Hull Prob
(Sorting Prob of CG)

Def \(A \subseteq \mathbb{R}^d \) is convex if closed under convex combinations.

Def \(\text{Convex Closure} (A) = \text{CC}(A) = \text{smallest convex set} \supseteq A \)

2 Defs of Convex Hull

Def 1 \(\text{CH}(A) = \bigcap \text{CC}(A) \)

Def 2 \(\text{CH}(A) = \text{CC}(A) \)

We will use Def 1

A finite set

Thus in 2D \(\text{CH}(A) \) is a simple closed polygon.

(say CCW)
The Convex Hull Prob
(Sorting Prob of CG)

Def \(A \subset \mathbb{R}^d \) is convex if closed under Convex Combinations.

Def \(\text{ConvexClosure}(A) = \text{CC}(A) = \text{smallest convex set} \supseteq A \)

2 Defs of Convex Hull

Def 1 \(\text{CH}(A) = \bigcap \text{CC}(A) \)

Def 2 \(\text{CH}(A) = \text{CC}(A) \)

We will use Def 1

A finite set

Thus in 2D \(\text{CH}(A) \) is a simple closed polygon.

(say CCW)
We will use the following characterization:

Claim: \([a, b]\) is on \(CH(A)\) iff \(a \neq b\)

1) \(a, b \in A\)
2) \(\forall a' \in A\) unless \(a'\) left of \([a, b]\)
 or \(a' \in [a, b]\)

2D Convex Hull by divide-and-conquer

\(A = \{P_1, \ldots, P_n\}\)
\(P_i = (x_i, y_i)\)

Preprocess: sort \(A\) by \(x\)-coordinate

2D-CH(A)
if \(|A| = 1\) return \(P_1\)
else \(CH_L = 2D-CH(P_1, \ldots, P_{n-1})\)
 \(CH_R = 2D-CH(P_{n-1}, \ldots, P_n)\)
 STITCH \((CH_L, CH_R)\)
STITCH \((L, R)\)

1. \(L\) - lower bridge \((L, R)\)
 - \(a = \text{rightmost } L\)
 - \(b = \text{leftmost } LR\)

Repeat \(x)\) \(x\)

\(x)\) While \(a < \text{Right}(a, b)\) set \(a = a\)

\(xx)\) While \(b < \text{Right}(a, b)\) set \(b = b\)

Upper bridge \((L, R) = \) ?

Correctness

\(x)\) generates triangles \((a, b, a)\)

\(xx)\) " " \((a, b, b)\)

1) The \(\Delta\)'s are disjoint
 They are ordered by their intersection with vertical line \(L\).
2) They are in \(CC(A)\).

Thus termination:

At termination \(a, \bar{a}, b, \bar{b}\) are all lift of \((a, b)\)
Since \((a, \bar{a}), (b, \bar{b})\) and \((b, \bar{b}), (b, \bar{b})\) are on CH(L) & CH(R) respectively.

Done

Timing: Preprocess \(O(n \log n)\) to sort

STITCH in \(O(n)\)

\[T(n) = 2T(n/2) + cn \]

\[T(n) = O(n \log n) \]
Lower bounds

Sorting reducible to CH

Input: \(x_1, \ldots, x_n \)

\(\text{CH}\left((x_1,x_1^2), \ldots, (x_n,x_n^2) \right) \)

The CH will be \(x_i \)'s in sorted order.

An important use for CH

\(\bar{p}_i \rightarrow \bar{p}_n \in \mathbb{R}^2 \)

\(\bar{p}_i = (p_x, p_y, p_x^2 + p_y^2) \)

\(\text{CH}(\bar{p}_1, \ldots, \bar{p}_n) = \text{Triangulated surface} \)

The Delaunay Triangulation
Quick Sort & Backwards Analysis

Consider
\(QS(M) \) (distinct keys)
1) pick random \(a \in M \)
2) split \(M \) : \(s < a < l \) \((|M|-1) \) comparisons
3) return \(QS(s) \times a \times QS(l) \)

Goal: Expect \# comparisons

Consider dart game:
Init: empty board

While non-empty square
pick random empty sq

cost = \# empty sqs to left & right of dart.

Claim
Expect cost of dart game = Expect cost QS.
Backwards game:

Init: full board

While I dart remove random dart.
Cost: # empty Ds left & right.

Claim: \(\text{Expect cost} \ DG = \text{Expect cost} \ BW \ DG \)

Analysis backwards game
Assume i darts on board
\(T_i = \text{Expected cost to remove random dart.} \)

Total Cost = \(\sum \) cost of 1 dart

\[
T_i \leq \frac{2(n-i)}{i} \leq \frac{2n}{i}
\]

\[
E(DG) = \sum T_i \\
\leq \sum \frac{2n}{i} = 2n H_n \\
= O(n \log n)
\]
Random Incremental CH

Procedure Random Incremental CH \((P) \)

1. Make \(\Delta = (P_i, P_j, P_k) \) pick \(C \) in interior \(\Delta \)
2. Construct ray from \(C \) to each \(P_i \)
3. Partition \(P_i \) by edge of \(\Delta \) they cross.
4. Randomly permute \(P_1, \ldots, P_n \).

 For \(i = 1 \) to \(n \)

 Let \(e \) be edge crossed by ray \(C \rightarrow P_i \)

 Build Tent \((P, e) \)

Procedure Build Tent \((P, e) \)

1. Find edges of CH "visible" to \(P \) by searching out from \(e \).
2. Replace visible edges with 2 new edges.
3. Assign rays to the new edges.
An Example

n-points on a circle

Worst case: Incremental order $p_1 \rightarrow p_n$

"Best" case $p_1, p_2, p_3, p_{1/2}, p_{3/4}, p_{3n/4} \ldots$
Correctness?

Timing

$O(n)$ work other than BuildTest.

Consider steps 1 & 2 in BuildTest

1) At most an edge generated over life of algo.
2) Charging rule for line-side tests
 a) Not visible tests: we charge P_i
 each visible test: we charge to the edge

 total $2n + 2n = 4n$ tests.

Consider step 3 in BuildTest.

Ray-costs

Backwards analysis

2-3 points to pick from say P_i

$\text{Cost}(P_i) = \begin{cases}
0 & \text{if } P_i \text{ not on hull} \\
\# \text{ray crossing to left & right} & \text{otherwise}
\end{cases}$
$C_i = \text{cost}$

$E(C_i) \leq \frac{2(n-i)}{i-3}$

$C = \text{total cost}$

$E(C) = \sum_{i=4}^{n} E(C_i) \leq \sum_{i=4}^{n} \frac{2(n-i)}{i-3} \leq 2n \sum_{i=1}^{n} \frac{1}{i}$