Def: A graph is polytopal if the vertices and edges correspond to the 1-skeleton of a 3-polytope.

Thm [Steinitz] A graph is polytopal iff it is planar, simple, and 3-connected.
Fact: \(K_n \) the complete graph is \(n \)-polytopal

neighborly polytopes
Map for Today

Tutte's Alg
+ M-C correspondence
+ Fix Body issue

Steinitz's Thm
If G is polytopal then it is simple, planar, and 3-connected.

Edges are line segments uniquely defined by endpoints.
Monotone Paths
Equil Stress
\[\Rightarrow \]
Recip Diagrams
\[\Rightarrow \]
Liftings

If outer face is flat after lifting from Tutte + MC
Then we're done.

\[\Rightarrow \infty \text{- face} \]
If the outer face is a $\Delta \Rightarrow$ Done
Claim: Either G has a \(\Delta \) face or its dual has a \(\Delta \).

\[
\frac{E}{F} \geq \frac{4}{2} = 2 \quad V - E + F = 2
\]

\[
\frac{E}{V} \geq \frac{4}{2} = 2 \quad V - E + F \leq \frac{E}{2} - E + \frac{E}{2} = 0
\]

\[
2 \leq 0
\]

Polar Polytope
Construction

If $\exists \Delta$ face
3 Fix that Δ as outer face
 Run Tutte's Alg.
 Graph search to assign heights in lifting
3 else
 # dualize the graph
 # do this
 # polarize
3