Centerpoints in the plane
If \(P \subset U \cup \{ A \} \cup \{ B \} \cup \{ C \} \)

Let \(L \) be a HS containing \(C \)

Then \(L \) is a CP of \(P \cup Q \)

If \(C \) is a center point of \(P \cup Q \)

Given \(H \) is a light HS
If \(p \neq h \) then

\[
\frac{3}{n^3} \geq 1 + \frac{1}{n} |h \cup (P \cup Q) - 1 + C|
\]

From \(\rho \) nodes sets

\[\varphi \leq \text{be a halfspace containing } C\]

\[n \text{ possible } n = \text{ fixed}\]
In the plane, we can find 115 cuts in $O(n)$ time.

Given a set in \mathbb{R}^d,

hyperplane that bisects each set

Ham Sandwich Thm.
\(T(n) = \sum_{\text{odd}} + O(n) = O(n) \)

Repeat until only a few pls left.

Repeat until one set is empty.

Replace with their Radon pt.

Pick one pt from each of

\((n', (L,D', (R,U))\) and

Find L, U, R, [O(n) time]

Algorithm