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1 The Point Location Cost of Random Incre-

mental Delaunay Triangulation

Figure 1: The query is shown in red and the search path through the DAG is
shown in dark blue.
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The point location for this algorithm works by keeping around all of the
triangles seen throughout the course of the algorithm in a data structure called
the history DAG. Let P = {p1, . . . , pn} be the input points in a random order
and let pi be a particular point whose point location cost we would like to
compute. Let Dj be the Delaunay triangulation of p1, . . . , pj and let σj be the
triangle containing pi in Dj. Let Kij be the degree of σj−1 in the history DAG.
The value of Kij is 0 if and only if σj−1 = σj . This means that Kij 6= 0 if and
only if pj is a vertex of σj . So, the probability can be written as

Pr[Kij 6= 0] = Pr[pj ∈ σj ] =
3

j
. (1)

This step uses that fact that among the first j vertices, all are equally likely to
be last.

If Kij is nonzero then its value is at most the degree of pj in Dj . So, the
conditional expected value is

E[Kij | Kij 6= 0] ≤ E[deg pj in Dj ] < 6. (2)

We can use the two preceding equations to bound the expected value of Kij .

E[Kij ] = Pr[Kij 6= 0]E[Kij | Kij 6= 0] <
18

j
. (3)

The total number of triangle checks needed to compute the entire Delaunay
triangulation is

n
∑

i=1

i
∑

j=1

Kij , (4)

and its expected value is

E





n
∑

i=1

i
∑

j=1

Kij



 =

n
∑

i=1

i
∑

j=1

E[Kij ] (5)

<

n
∑

i=1

i
∑

j=1

18

j
(6)

=

n
∑

i=1

O(log i) (7)

= O(n log n). (8)

2 Voronoi Diagrams

As always, let P ⊂ R
2 be a set of n points in general position.
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Definition 2.1. The Voronoi cell of p ∈ P , denoted Vor(p), is the set of points

in R
2 that are at least as close to p as to any other q ∈ P . That is,

Vor(p) = {x ∈ R2 : |x − p| ≤ |x − q|, ∀q ∈ P}.

Definition 2.2. The Voronoi diagram of P , denoted Vor(P ) is the complex

formed by the collection of Voronoi cells of points of P . The cells of the complex

are associated with subsets of U ⊆ P and are the common intersection of the

Voronoi cells of each u ∈ U .

The Voronoi diagram depicts a solution to the so-called Post Office Problem.
In this problem, there are a set of post offices P (points in the plane), and we
want to know for a given address x (another point in the plane), what is the
closest post office to x. We construct the Voronoi diagram of P . If x ∈ Vor(p)
then p is the closest post office.

I have also heard this problem described in a different context. Let P be
the addresses of a collection of muggers. Now muggers tend to mug people close
to where they live. Say you are at a street corner x and you just got mugged.
If you had a Voronoi diagram of P , you could find the Voronoi cell containing
x and there is a good chance that would tell you who mugged you. Clearly
this second example is not really an exact science and the problem of actually
constructing Vor(P ) involves asking muggers where they live, a practice that is
unanimously discouraged by public safety professionals.

Theorem 2.1. The Voronoi diagram, Vor(P ) is dual to the Delaunay triangu-

lation, Del(P ).

Proof. In order to prove this duality relationship, we need to show the following
three bijections.

Voronoi cells ↔ P (Delaunay vertices) (9)

Voronoi edges ↔ Delaunay edges (10)

Voronoi vertices ↔ Delaunay triangles (11)

The first bijection, Voronoi cells ↔ P , follows straight from the definition of
a Voronoi cell.

For the bijection between the edge sets, we will associate a Delaunay edge
(p, q) with the Voronoi edge Vor(p) ∩ Vor(q). We need to show that such a
Voronoi edge exists if and only if the corresponding Delaunay edge exists. The
Delaunay edge (p, q) exists if and only if there is a circle C through p and p that
contains no other points of P in its interior (This fact requires the assumption
that the points are in general position). Let x be the center of C. The distances
|x − p| and |x − q| are equal to the radius of C. For any point r ∈ P , |x − r| ≤
|x−p| = |x−q| because C is empty. Therefore, x ∈ Vor(p)∩Vor(q) and therefore
the Voronoi edge corresponding to (p, q) exists. Conversely, if the Voronoi edge
corresponding to (p, q) exists, then any point x ∈ Vor(p) ∩ Vor(q) is the center
of an empty circle through (p, q), and thus the Delaunay edge (p, q) exists.
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Similarly to the case of edges, we will associate the Delaunay triangle △(pqr)
with the Voronoi vertex Vor(p) ∩Vor(q) ∩Vor(r). Again, we need to show that
this intersection is non-empty if and only if △(pqr) ∈ Del(P ). We observe that
the vertices of the Voronoi Diagram are common intersection of 3 voronoi cells
and therefore are equidistant from 3 points of P . That is, the vertices of Vor(P )
are centers of circles that contain 3 points of P . Such a circle cannot contain
any other points of P in its interior for other wise, that point would be strictly
closer to the center than the points on the circle. This would contradict the
assumption that the center is in the Voronoi cells of the points on the circle.
So, the three vertices on the circle form a Delaunay triangle. Conversely, every
Delaunay triangle has an empty circumcircle whose center is the intersection of
the Voronoi cells of its vertices.

3 Higher dimensions

It should be clear that there wasn’t anything particularly special about the plane
when we defined the Voronoi diagram. In fact, all we relied on was distances. So,
as you might have guessed, the definition of Voronoi diagrams can be extended
to any dimension.

We need to have a new definition to understand what kind of object the
Voronoi diagram is in higher dimensions. For this we will talk about a standard
object of combinatorial topology, known as a cell complex.

Definition 3.1. A cell complex is a collection of cells k such that

1. if c1 ∈ K then all of the faces of c1 are in K, and

2. if c1, c2 ∈ K then c1 ∩ c2 is a face common to both.

This definition is not really satisfactory because we haven’t yet defined cells
or faces. Rather than giving the definition in full generality, we will just consider
it in the special case of polytopal complexes. This is all we need for this class.

As we saw when we talked about convex hulls, a (convex) polytope is the
intersection of a finite set of half-spaces. If the polytopes are bounded, then
they can also be represented as the convex closure of a finite point set. Every
polytope P has a dimension that is just the dimension of aff(P ). The faces of
a polytope are polytopes of lower dimension on the boundary.

Definition 3.2. A polytopal complex is a cell complex whose cells are polytopes.

Voronoi cells are polytopes. Each cell is the intersection of the halfspaces
bounded by the perpendicular bisectors between a point and its Delaunay neigh-
bors. The Voronoi diagram is polytopal complex that covers the ambient space
R

d. It is not hard to check that all of the conditions of the definition are satisfied.
You are encouraged to do so.
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