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1 Delaunay Triangulation as Convex Hull

We start with a handy definition.

Definition 1.1. A (hyper)plane H is a support (hyper)plane for a convex set
S if H contains at least one point of S and S is contained in a closed halfspace
bounded by H.

It is a basic fact of convex geometry that a point is on the convex hull of S

if and only if there exists a support hyperplane.
Recall that the Delaunay triangulation Del(P ) is defined to have the property

that every circumcircle is empty of points in P . Recall also that we can check
if a point is inside a circumcircle by doing a hyperplane test in R

3 after lifting
the points onto the paraboloid. Combining these two ideas we get the following
cool fact.

Lemma 1.1. Del(P ) ∼= LH(P+), where LH denotes the lower convex hull, P+

is the lifting of P onto the paraboloid, and ∼= denotes isomorphism (like in graph
theory but with triangles instead of edges).

Proof. The plane through any set of three lifted points is a support plane with
CC(P+) above it if and only if those points form a Delaunay triangle (before
the lifting).

Lemma 1.2. For a point set P in general position, Del(P ) always exists.

Proof. This follows from the previous Lemma and the fact that CH(P+) always
exists.

Lemma 1.3. The FlipToDelaunay algorithm terminates.

Proof. Let a(T ) be the lexicographically sorted list of all the angles in T . We
saw last time that flipping an edge that is not locally Delaunay increases the
min angle locally. So if triangulation T ′ is formed from T by flipping one edge
that is not locally Delaunay, a(T ′) <lex a(T ). There are only a finite number
of triangulations so the process must terminate.

Lemma 1.4. If an edge e is not locally Delaunay, then e can be flipped.
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Proof. We will prove the contrapositive: if e cannot be flipped then e is LD. Let
a, b, c, d be the four vertices of the two triangles adjacent to e. By assumption
e cannot be flipped so a, b, c, d are not in convex position. Without loss of
generality, d ∈ △abc. There exists exactly one triangulation of such a point set
and it contains all possible edges. Since Del({a, b, c, d}) exists, it must be this
triangulation. So, every possible edge, in particular e, is locally Delaunay.

Theorem 1.1. The output of the FlipToDelaunay algorithm is Del(P ).

Proof. By the previous Lemma, the algorithm will not terminate while any
edges are not LD. It follows that at termination, every edges is LD. Last time
we saw that T = Del(P ) if and only if every edge of T is LD. So, the output
triangulation is Del(P ).

2 Small Angles

Theorem 2.1. Given P ⊂ R
2 in general position, Del(P ) achieves the max-min

angle among all triangulations of P .

Proof. Suppose some triangulation T has a larger min angle than Del(P ), and
thus a(T ) < a(Del(P )). If T is not Delaunay, we can use the flip algorithm
to produce a sequence of triangulations T = T1, T2, . . . , Tk = Del(P ) such that
a(Ti+1) < a(Ti). It follows that a(Del(P )) < a(T ), a contradiction.

3 Analysis of the FlipToDelaunay Algorithm

Our proof that the FlipToDelaunay algorithm terminates could be used to
give an explicit runtime bound but it wouldn’t be very good. We can do much
better by using the following Lemma.

Lemma 3.1. If an edge ab is removed by a flip in the FlipToDelaunay

algorithm at most one time.

Proof. Let hT : CC(P ) → R be the piecewise linear function defined by lifting
the vertices of the triangulation T onto the paraboloid.

A Delaunay flip T → T ′ switches between the upper and lower hulls of a
lifted tetrahedron. So, hT > hT ′ and, in fact, the h functions are monotone
decreasing as the algorithm proceeds.

Say the edge ab is flipped out in favor of an edge cd. These edges necessarily
intersect at some point, call it x. So hT (x) > hT ′(x). Suppose for contradiction
that at some later triangulation T ′′, the edge ab is flipped back in, then hT ′′(x) =
hT (x) > hT ′(x), a contradiction.

Theorem 3.1. The running time of FlipToDelaunay is O(n2).

Proof. This follows from the observation that there are only O(n2) possible
edges and each could be removed in at most one flip (by the preceding Lemma).
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4 Higher dimensions

Up until now, we have talked about triangulations as a bag of triangles. Now
we’ll tighten up our definitions so we can clearly see how to extend them to
higher dimensions.

Definition 4.1. A k-simplex is the convex closure of a set of k + 1 affinely
independent points. the points are called the vertices and k is the dimension of
the simplex.

For example, a point is a 0-simplex, an edge is a 1-simplex, a triangle is a
2-simplex, and a tetrahedron is a 3-simplex. We will identify a simplex with its
vertex set.

Definition 4.2. A face of a simplex is the convex hull of a subset of the vertices.

Definition 4.3. A simplicial complex is a family of simplices K such that

1. if σ ∈ K and σ′ is a face of σ then σ′ ∈ K, and

2. if σ ∩ σ′ then they intersect at a common face.
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