Computational Geometry: Lecture 5

Don Sheehy
January 29, 2010

1 Degeneracy

In many of the algorithms that we have discussed so far, we have run into
problems when that input is somehow troublesome. For example, we saw that
our convex hull algorithm had to be more careful if any three points are collinear.
Also, our sweepline algorithm had to special case the situation where an input
line segment is horizontal.

For the sake of getting through the high level algorithms, we simply asserted
that “bad stuff doesn’t happen”, but really, we’d like to give a more formal
definition of what we mean by that. In the Computational Geometry literature,
the term general position is used to describe an such arrangements of points.
Sometimes, it means simply that no three points are collinear. Other times, it
might mean something stronger such as no four points are cocircular.

An input point set is generic of in general position if it avoids some measure
zero set in the space of inputs. Another way to think of this is to assume that
the input has been infinitesimally perturbed.

As we saw last time, the operations that we will be doing on point sets usually
take the form of a determinant of some matrix. We called these linear predicates.
The calculation of the determinant is the evaluation of some polynomial. Recall
that the zero set of a nonzero polynomial has measure zero in the parameter
space. You may be more familiar with the case of univariate polynomials in
which there are only a finite number of zeros. Any random perturbation to the
coordinates of a matrix with determinant zero will cause the determinant to
change.

For the most part we will limit our attention to input in general position.
This is also why we often talk of them as linear predicates despite the fact that
can take three values. We simply assume that they will not evaluate to zero on
the inputs.

2 Delaunay Triangulations

For now, we will define a triangulation of a point set P to be a decomposition
of CC(P) into triangles with vertices in P.

Triangulations are useful for many applications. As a simple example, con-
sider a set of points P in the plane corresponding to gps coordinates. Now
imagine that associated with each point I have an altitude measurement. If I
want to take my data and draw a 3D terrain, I can start with a triangulation
in the plane and then lift the triangles into 3D by lifting their corners.

I started with an altitude function f : P — R. With a triangulation T, I get
a natural extension of this function to all of CC(P), i.e. fr : CC(P) — R, by
looking at the height of the terrain at any point inside the triangulation.

Today, we’ll be looking at the most important triangulation of all, the De-
launay Triangulation. A triangulation T of a set of points P is the Delaunay
triangulation of P (denoted Del(P)) if for all triangles ¢ € T, the circumcircle
of t (denoted cc(t)) is empty of points from P.

From this definition, there are several obvious questions to ask:

1. Does it always exist?

2. Is is unique?

3. How do we compute it?

4. How quickly can we test if a triangulation is in fact the Del(P)?

The answers to the first two questions are both “Yes (assuming general
position)”. We will see why this is the case next time, but for now I'll ask you
to assume it so that we can move on to some other interesting properties of the
Delaunay triangulation and get a look at an algorithm.

The Delaunay triangulation has two very important properties that we will
be dealing with today.

e Among all triangulations of P, Del(P) maximizes the minimum angle.
e Del(P) is locally checkable.

We'll clarify what the second one means in a second. First, let’s consider a
warmup problem. Given a triangulation T how do you test if T = Del(P). The
naive algorithm would, for each triangle, check if any of the points encroach on
its circumcircle. There are at most O(n) triangles! and each requires O(n) work
to check encroachment. So the total running time of this algorithm is O(n?). If
we have a data structure that can tell us in constant time what triangles lie on
either side of an edge, we can actually do this computation in O(n) time using
the following ideas.

3 Local Delaunay Characterization

Say that an edge ab is locally Delaunayif either
e abis on CH(P), or

L This follows from Euler’s Formula.

e ab is adjacent to triangles Aabc and Aabd and d > cc(abe).

Let’s do a quick sanity check. Suppose Aabc € Del(P). Then clearly the
edge ab is locally Delaunay. How about a converse question: if ab is locally De-
launayin some triangulation T, is ab necessarily an edge of a Delaunay triangle?
Here, the answer is “No”. If Aabc and Aabd are the two triangles adjacent to
ab then the locally Delaunaycondition for ab only guarantees that ¢ and d do
not encroach the triangles Aabd and Aabce respectively, but other vertices can
also encroach these triangles. You are encouraged to draw a picture for this
counterexample.

The fact that we can check the Delaunay property by local checks is encap-
sulated in the following Lemma.

Lemma 3.1. Given a triangulation T of P, if every edge e in T s locally
Delaunaythen T = Del(P).

Proof. Pick an arbitrary point p € P. Choose x € CC(P). Say that the triangle
containing x is Aabe. Consider the line segment px. We will prove that for any
choice of x, if pZ only crosses locally Delaunayedges, then p > cc(abc). The
proof will be by induction on the number of triangulation edges crossed by pzT.
By induction, assume that if pT crosses < k edges then p 3 cc(abe). The base of
the induction (k = 1) follows exactly from the definition of the local Delaunay
property. Without loss of generality, assume that pT crosses the edge ab to enter
Aabe. Let d € P be such that Aabd is the other triangle sharing the edge ab.
Consider a point &’ on PZ that lies in Aabd. The line segment px’ crosses one
fewer edge than T and so by induction, p > cc(abd). However, the fact that ab
is locally Delaunayimplies that cc(abd) contains the intersection of cc(abc) and
the halfspace containing d bounded by the line through ab. Since p lies in this
same halfspace and is not contained in cc(abd), it follows that p 5 cc(abe). So,
we have proven that p does not encroach on any circumcircle. Since the choice
of p was arbitrary, we find that no point in P encroaches on the circumcircle of
any of the triangles in T" and thus, T' = Del(P). O

The preceding lemma implies a natural algorithm for testing if a triangula-
tion is the Delaunay triangulation. Verify that each edge is locally Delaunay.
Testing the locally Delaunaycondition requires at most one InCircle test. You
might want to prove for yourself why we don’t need two tests, one for the triangle
on either side.

4 Edge Flips

Given 4 points in convex position, there are two possible triangulations corre-
sponding to the two choices of a diagonal. We call the swap of one edge for the
other, an edge flip (or sometimes just a flip). The key fact to observe is that
when we do the flip, one of the triangulations is Delaunay and the other is not.
That is, if the one interior edge is not locally Delaunay, flipping it will make it
locally Delaunay.

The notion of a flip, leads to an idea for a simple algorithm for computing
the Delaunay triangulation from an arbitrary triangulation.

5 A very simple algorithm

Suppose we have been given some triangulation 7" of P. At a high level, we can
run the following algorithm:

Algorithm 1 FLIPTODELAUNAY

Input: A triangulation T of aset P € R? : |P| =n

while some edge e is not locally Delaunay do
Frip(e)

end while

At first sight, this algorithm perhaps doesn’t seem like it should work. It
depends on many other facts that we will have to prove. For example, although
a flip does make one new edge locally Delaunay, it may cause other edges to
longer be locally Delaunay, so it is not even immediately clear that the algorithm
terminates. Also, if an edge is not locally Delaunay, does that necessarily mean
that we can flip it?

We won’t have time to prove everything today, but we can at least get a
sense for why this algorithm might terminate.

Lemma 5.1. Flipping an edge increases the minimum angle of triangles adja-
cent to the flipped edge.

Proof. We will use the following basic fact from geometry illustrated in Figure 1.
For any chord ab through a circle S and any point ¢ on S forming a CCW turn
with a and b, the angle Zacbh is the same regardless of which point ¢ on S is
chosen. If ¢ is chosen outside of S, then that angle is strictly larger than it
would have been for ¢ on S.

Let a, b, ¢, and d be four points in convex position as shown in Figure 2.
The edge ab is locally Delaunay. We want to show that the smallest angle in
the triangulation that uses ab is larger than the smallest angle in the triangu-
lation that uses cd. It will suffice to show that for each angle in the Delaunay
triangulation, there is some smaller angle in the triangulation before the flip.

We use the fact about angles opposite circle chords to yield the following
inequalities.

01 > 04 (1)
6y > 67 (2)
0g > 03 (3)
05 > Os (4)

We also have the trivial inequalities, 67 + s > 07 and 03 + 64 > 03. This
complete the proof.

O

So, we see that angles are improved locally with every flip. This hints at
three interesting facts that we’ll see in more rigor next time.

1. The flip algorithm terminates.

2. The Delaunay triangulation has the largest minimum angle among all
triangulations of P.

3. Any two triangulations of P can be connected by a finite sequence of flip
operations. This is also known as the connectivity of the flip graph of
planar triangulations.

It may not be immediately obvious why we will be able to derive these three
facts, but I claim that we have all the pieces in place. We'll see how to put them
together next time.

