Computational Geometry: Lecture 2

Don Sheehy
January 25, 2010

1 Where this course lives on THE TRIANGLE

There is a triangle that software engineers like to draw. The three vertices are
labeled “good”, “fast”, and “cheap”. It is usually drawn on the chalkboard and
followed with some statement about how you only get to pick two. Interestingly,
filmmakers use the same triangle with the same caveat. So, next time someone
asks you for a similarity between software developers and filmmakers, you’ll
have a better answer than, “They have a higher than average incidence of facial
hair.”

Mathematicians also have a triangle that they draw, but in their version,
the vertices are labeled “novel”, “useful”, and “beautiful” and the goal is to get
at least one. This triangle is used to gauge the relative importance of a work.
It can also be applied to classes. There is a lot of computational geometry in
the useful corner and there is a fair amount in the novel corner, but you should
know at the outset that I have a strong bias towards the beautiful. If you think
that sounds like BS, we have all semester to prove you wrong.

2 Convex Hulls

We will start with a rough idea of a convex hull for points in the plane and then
proceed to formulate an algorithm for computing one. By looking at our first
attempt at an algorithm, we will hopefully get a better idea of the relationship
between the convex hull problem in R? and the sorting problem.

Let’s start with a set of n points pi,...,p, in the plane. Imagine that the
plane is replaced with the surface of a table big enough to hold all of the points.
Now, to mark the points, I could hammer a nail, halfway into the table. The
convex hull of this point set is just the shape a rubber band would make if I
stretched it around the nails.

The nails-in-a-table model of computation does not come up in computer
science courses very often. Clearly, it can do at least one problem very well, it
can compute 2D convex hulls in constant time. It is what is sometimes referred
to as a physical model of computation.



So, how do we come up with an algorithm for computing a convex hull in
our model of computation, the Real-RAM? That is, how do we output a list of
the vertices vy, ..., v of the convex hull in some cyclic ordering.

Let’s start with an easier problem, just find one vertex of the convex hull.
You should be able to convince yourself that the leftmost point will have to
touch the rubber band. So, we can find one vertex of the convex hull in O(1)
time. Can we find an edge? After a little thought, one idea is to just choose the
edge

3 Points, Vectors, and Types

When we think of a point p as an element of Euclidean space, R?, we usually
think of it as represented by a set of coordinates (p1,...,pq). This is the same
representation we might use to describe a vector in the real vector space R?.
Is there a difference between points and vectors? Yes, recall that any vector
space must have a unique zero element, that is, an origin. For most problems
on point sets, at least in this class, where we place the origin doesn’t matter.
The relative scale also does not matter. This is more like the ruler-and-compass
world, where we started by drawing two points, one for the origin and one for
the scale.

We're going to want to do arithmetic on points. We could just treat the
points as vectors and do vector arithmetic, and that is what we’ll do, but we
have to be careful. Given two points a = (ag,ay) and b = (bg, b, ), the sum
a+b = (az + by,ay + by) depends on the origin. If we move the origin by a
vector v = (vg,vy), then a and b move by v and we get that a +b = (ay +
by — 2vg, ay + by — 2v,). In order to keep things well defined, we will say that
arithmetic on points will yield a vector. Only certain arithmetic combinations
of points will yield a point.

4 Combinations

There are four basic kinds of vector combinations that we care about: linear,
non-negative, affine, and convex.

Definition 4.1. A linear combination of v1,...,v, € R? is any sum of the

form
n
E Q;V;,
i=1

where a; € R for all i.

Definition 4.2. A non-negative combination is a linear combination in
which o; > 0 for all 1.

Definition 4.3. An affine combination is a linear combination in which
Y= 1



Definition 4.4. A convex combination is a linear combination that is both
non-negative and affine.

A combination takes a collection of vectors and some coefficients (the «;’s)
and produces a new point. We can also use combinations to produce infinite
sets by taking the closure of all possible combinations. The closure of linear
combinations is usually referred to as the span. The closure of non-negative
combinations is often called a cone. You should convince yourself that the
non-negative combinations of two points in the plane forms a an infinite wedge
pointed at the origin. The affine closure of 2 points is the infinite line between
them. The convex closure of two points is the line segment between them. The
convex closure of a set of points in the plane is a convex polygon.

5 What is a convex hull?

Definition 5.1. A set S is conver if it is closed under conver combinations.
Equivalently, S is convez if a,b € S implies ab C S.

Definition 5.2. The convex hull of a set S is the boundary of the convex closure.

We will use CH to refer to the convex hull and C'C to refer to the convex
closure.

6 A simple algorithm

At this point in the class we came up with a very basic convex hull algorithm.
Our approach was really simple. First, find one point vy on the convex hull
(we chose the leftmost point). Next, we picked a second point by choosing the
point that makes that smallest slope when connected to vg. We then put this
operation in a loop, adding the edge in each iteration that moves rightward
and has the least slope. This gave us the bottom convex hull and we more or
less convinced ourselves that, barring degeneracies, we could run the algorithm
again while standing on our heads to get the upper hull.

A quick analysis showed that our naive little algorithm runs in time O(n?).
Looking a little closer, it became clear that the algorithm we developed looks a
heck of a lot like a class “bad” algorithm, Selection Sort.

Somehow, using a bad sorting algorithm with a slope comparison replacing
the usual comparison gave us something like a convex hull algorithm. There are
a couple obvious questions we should ask ourselves at this point. First, what
else is different about this comparison operation? Second, what if we used a
smarter sorting algorithm? We’ll cover both of these questions in more depth
in the coming lectures.



