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1 Geometry, Topology, and Combinatorics

Today we’re going to talk about planar graphs. There are many aspects to
planar graphs and many perspectives from which to study them. Though we
want to focus on the geometry, we will quickly see that we need to depend also
on the perspective of topology and of combinatorics.

The combinatorial characterization of planar graphs is probably what you
are most familiar with. In that language, we have Kuratowski’s Theorem which
says that a graph is planar if and only if it lacks a K5 or a K3,3 minor.

The topological characterization is the most immediate intuitively, but not
so commonly seen in full rigor by undergraduates. We will not really rectify that
situation and will make ample appeal to your intuition about the topology of
the plane. For example, we’ll assume facts such as the Jordan Curve Theorem
and we’ll assume definitions such as connectivity of a space.

We saw last time that we can represent a drawing of a planar graph in the
plane considering each edge to have two sides and two directions. That is, we
took the combinatorial structure of the graph, added some information about
faces and the ordering of the edges coming out of a point, and suddenly had
topological structure. Where, you might ask, is the geometry?

That will come in the specifics of how we choose to draw or embed G in the
plane. In particular, we are interested in embeddings that have a nice geometric
structure such as when all edges are straight line segments.

2 Planar Graph Basics

The intuitive (topological) definition of a planar graph is just one that we can
draw in the plane without any edge crossings. This requires us to be clear about
what a drawing is, and we’ll get to that soon enough.

A purely combinatorial definition comes from a Theorem of Kuratowski.

Theorem 2.1 (Kuratowski’s Theorem). A graph G is planar if and only if it
contains neither K5 nor K3,3 as a minor.

The graphs K5 and K3,3 are respectively the complete graph on 5 vertices
and the complete bipartite graph with 3 vertices per part. Recall that a minor
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of G is a graph derived from G by applying the following two operations in any
combination.

• Take a subgraph.

• Contract an edge.

The importance of this characterization is that it doesn’t require us to reason
directly about the space of all possible drawings of G. In fact, we can use this
to prove facts about planar graphs without reference to a drawing at all.

The Jordan Curve Theorem is the one theorem of Topology that we will
depend heavily upon throughout our analyses. We will state it here without
proof.

Theorem 2.2 (Jordan Curve Thoerem). Every simple, closed curve in the
plane separates the plane into two connected components.

It says that there is an inside and an outside to every loop and they are not
connected. This simple statement is rather intuitive but it’s worth noting that
its correct proof is often found at the culmination of a full semester course on
topology.

3 Embedding Planar Graphs

We are generally comfortable with the notion of a drawing of a graph. We
use them all the time, even for non-planar graphs, as a way to get our head
around basic principles in graph theory. To speak about drawings of graphs
more formally, we will have to introduce some basic topological preliminaries.

Definition 3.1. An embedding Φ(G) of a graph G = (V,E) into the plane is an
injective map φV : V → R

2 and a collection of continuous maps ψe : [0, 1] → R
2

for each edge e ∈ E such that the following properties hold.

• For an edge e,ψe(0) and ψe(1) map to the endpoints of e.

• The embeddings of any pair of edges are disjoint or they intersect at a
common endpoint.

Definition 3.2. The faces of an embedding of a planar graph are the connected
components of R

2 \ imΦ(G).

Recall Euler’s Theorem for the plane.

Theorem 3.1. If Φ(G) is an embedding of a planar graph with n vertices, m
edges, and f faces, then the n−m+f = 2. Moreover, f ≤ 2n−4 and e ≤ 3n−6
with equality only for maximally planar graphs (i.e. triangulations).

Definition 3.3. A graph G is k-connected if |E| > k and removing ≤ k vertices
will not disconnect it.
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The condition that |E| > k is standard and not really necessary except that
it is almost always required. Thus, putting it in the definition avoids us having
to add in the extra condition every time we use it. An important equivalent
characterization of k-connectivity due to Menger is as follows.

Theorem 3.2 (Menger’s Theorem). A graph G = (V,E) is k-connected if and
only if there exist k vertex disjoint paths between every pair of vertices u, v in
V .

You probably saw this one in your graph theory class, and it is not a theorem
of geometry so we will skip the proof.

Lemma 3.1. If a graph planar and 2-connected then every face is a cycle.

Proof Sketch. Suppose for contradiction that some face F has a vertex v that
appears more than once. Then this vertex must separate the graph. There is a
simple closed curve C around the shortest tour T in the boundary of F starting
and ending at a repeated vertex v. the Jordan Curve theorem implies that C
divides the plane into two parts. If T is not the whole boundary of F , then there
is some part of in each component of R

2 \ C. However, we can draw C so that
it only touches G at v and thus every path from the inside of C to the outside
goes through v. It follows that v separates G and thus G is not 2-connected, a
contradiction.

Definition 3.4. A non-separating cycle D of a graph G is an induced cycle in
G such that G \ C is connected.

If you are ever digging through historical literature, you may also see the
term peripheral polygon to refer to this same notion. Non-separating cycles are
a useful definition because of their intimate connection with the faces of a planar
graph.

Theorem 3.3. If G = (V,E) is a 3-connected planar graph then the faces of G
in any embedding in the plane are exactly the non-separating cycles of G.

Before we jump into the proof, let’s reflect for a second why this is a really
cool theorem. It gives a characterization of the faces of the graph, that is to say,
a topological object, in purely combinatorial terms. It says that we can speak
coherently about the faces of a 3-connected planar graph even if we don’t have
a particular drawing of it.

We have already seen that Euler’s formula allows us to talk about the number
of faces in the graph independent of the embedding.

We have a Theorem, let’s check that the hypothesis is necessary. We can
construct a simple example of a graph that is not 3-connected, and has no
non-separating cycles, but certainly has some faces. Consider for example K2,3.

Proof of Theorem 3.3. Let C be a non-separating cycle. By definition, G \C is
connected. Suppose for contradiction that C is not a face of G. Then there must
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be some part of G on both the inside and the outside of C. So, Φ(G) \ Φ(C) is
disconnected. This contradicts the assumption that G \ C is connected.

For the converse, let C be a face of Φ(G). First, we must show that C is
an induced cycle in G. Suppose it is not. Then, there is some edge e between
non-adjacent vertices of C. This edge splits C into two pieces. Since C is a face,
all of the drawing lies on one side of C and so we can use the Jordan Curve
Theorem to imply that the ends of e separate the graph. This contradicts the
assumption that G was 3-connected.

Now, we will show that G \ C is connected. Suppose for contradiction that
G \C is disconnected. Then let x and y be two disconnected vertices in G \C.
By Menger’s Theorem, there exist 3 disjoint paths from x to y in G. Because
x and y are disconnected in G \ C, there must be a vertex of each of these
paths C. Since C is a face, we can add a vertex at a point inside C and can
draw non-crossing edges to the vertices a, b, c. By contracting the edges in all
of these paths, we get K3,3 as a minor, with partition ({a, b, c}, {x, y, z}). This
contradicts the assumption that Φ(G) is a planar embedding.

4 Edge-maximal planar graphs

Definition 4.1. A planar graph G is edge-maximal if no edge can be added
while preserving planarity. Such a graph is also called a plane triangulation
and has only triangle faces.

We won’t prove it now, but I will ask you to prove following on your next
homework.

Lemma 4.1. Every plane triangulation with at least 4 vertices is 3-connected.

This implies that the triangles in a plane triangulation are determined by
any embedding.

5 Straight-line embeddings

As long as we are drawing graphs, a natural question comes to mind: given a
planar graph G, can we always draw G so that all the edges are straight line
segments? The answer is YES. We’ll in fact see two proof of this Theorem in
this class. The first will be today and will proof just this fact. The second will
be more elaborate but will in fact prove something much stronger.

Theorem 5.1. Given a planar graph G, there exists an embedding Φ(G) in the
plane such that the image of every edge is a straight line segment, i.e. φ(u,v)(t) =
tφV (u) = (1 − t)φV (v).

We don’t actually have all the tools we will need to prove this Theorem
today, but we’ll give it a start and see where we get stuck. That should guide
us to discover what facts we still need to prove.
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Proof. First observe that if the Theorem holds for plane triangulation graphs
then it holds for all planar graphs. This is because every planar graph is a
subgraph of a plane triangulation (just add edges until you can add any more).
If a graph has a straight-line embedding, then the “same” embedding works for
any subgraph.

We proceed by induction on the number of vertices n = |V |. As a base of
the induction, let n = 3, then we have a single triangle that we can easily draw
with straight edges.

For the inductive step, will remove a vertex and add in edges until we have
a plane triangulation again. Euler’s formula implies that some vertex v must
have degree at most 5. This is the vertex we want to remove.

We will have to add up to 2 edges to get the graph to be edge-maximal again.
These edges bound some new triangle faces in the graph and these triangle faces
must share a vertex. This follows because the hole left when we remove v has
at most 5 sides and all triangulations of a polygon with at most 5 sides have
this property. You can easily check all cases.

By induction, the new graph has a straight-line embedding. Now, because
triangulations are 3-connected, the Theorem we proved earlier implies that the
set of triangles in the embedding are determined. Since the triangles used to fill
the hole left by v all share a vertex, the corresponding cycle in the straight-line
embedding is star-shaped. Thus, after a slight perturbation, we can add v to
the interior of that hole, and draw straight edges to its old neighbors in G. This
gives us the desired embedding and completes the proof.
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