Computational Geometry: Approximate Nearest Neighbor Search in Quadtrees

Don Sheehy

April 29, 2010

1 Shifting Quadtrees

Let P be the input set of n points in \mathbb{R}^d . A shift is just a translation of the plane by some vector v. Let s>d be an odd integer that will denote the number of shifts. The ith shift, v_i is defined to be $(\frac{i}{s},\ldots,\frac{i}{s})$, for $i\in\{0,\ldots,s-1\}$. Let z(x) denote the point x with its bits shuffled. That is, $z(x)\in[0,1]$ is the representation of x on the Z-order space-filling curve.

Definition 1.1. A point a is central in an interval $[B_0, B_1]$ of length b if $a + \frac{b}{2s} = qb + r$ for some $q \in \mathbb{Z}$ and $b/s \le r < b$. We say that a is central in a box $B = [B_0^{(1)}, B_1^{(1)}] \times \cdots \times [B_0^{(d)}, B_1^{(d)}]$ if it is central in $[B_0^{(i)}, B_1^{(i)}]$ for every $i = 1 \dots d$.

Lemma 1.1. If B is a quadtree cell containing q and some point $p \in P$, then either pred(q) or succ(q) is in B.

Proof. All points of B have the same leading k bits in their binary representation of each coordinate for some k. Suppose for contradiction that some points $x,y \in P$ are $\operatorname{pred}(q),\operatorname{succ}(q)$, respectively and do not lie in B. Then, p has a longer prefix in common with q than either of x or y. Thus, either z(x) < z(p) < z(q) or z(q) < z(p) < z(y). Thus, either $x \neq \operatorname{pred}(q)$ or $y \neq \operatorname{succ}(q)$, a contradiction.

Lemma 1.2. If a is central in a cell B at scale b and $|a-p| \leq \frac{b}{2s}$ then $p \in B$.

Proof. This follows straight from the definition of *central*. \Box

Lemma 1.3. Let $p \in P$ be the nearest neighbor of q. If $p, q \in B$ at scale $b \leq k|p-q|$ and q is central in B, then either $\operatorname{pred}(q)$ or $\operatorname{succ}(q)$ is a $k\sqrt{d}$ -approximate nearest neighbor of q.

Proof. By Lemma 1.1, either $\operatorname{pred}(q)$ or $\operatorname{succ}(q)$ is in B. Let a denote the nearer of $\operatorname{pred}(q)$ or $\operatorname{succ}(q)$ to q. Since $a \in B$, each coordinate differs from q by at most b. So, the total distance from a to q is bounded:

$$|a-q| \le b\sqrt{d} \le k\sqrt{d}|p-q| = k\sqrt{d}|NN(q)-q|.$$

So, a is a $k\sqrt{d}$ -ANN of q.

Lemma 1.4. For any $a \in [0,1]$ and any interval B of length $b = \frac{1}{2^{\ell}}$, there is at most one shift v_i such that q is not central in B.

Proof. Suppose for contradiction that there are two shifts v_i, v_j such that

$$\left(a + \frac{i}{s} + \frac{b}{2s}\right) = q_i b + r_i, \text{ and}$$
 (1)

$$\left(a + \frac{j}{s} + \frac{b}{2s}\right) = q_j b + r_j,$$
(2)

where $0 \le r_i, r_j \le \frac{b}{s}$.

These two equations imply that

$$\frac{1}{s}(i-j) - b(q_i - q_j) = r_i - r_j.$$

Multiplying both sides by $\frac{s}{b} = 2^{\ell} s$, we get

$$2^{\ell}(i-j) - s(q_i - q_j) = \frac{s}{h}(r_i - r_j).$$

By our supposition, the RHS is nonnegative and less than 1. The LHS is an integer. Thus, the RHS must be 0. So, we can rewrite it as

$$2^{\ell}(i-j) = s(q_i - q_j).$$

We chose s to be odd so it does not divide 2^{ℓ} . So, s divides i-j. However, $0 \le i, j < s$, so it must be that i-j=0 and thus i=j, a contradiction.

Theorem 1.1. For some shift v_i , either $\operatorname{pred}(q)$ or $\operatorname{succ}(q)$ is a $O(d^{\frac{3}{2}})$ -approximate nearest neighbor of q.

Proof. Let p be the nearest neighbor of q. By Lemma 1.4, there exists v_i such that q is central at the smallest scale $b \ge 2s|p-q|$. Let B be the corresponding cell containing q at scale b.

The choice of b implies that $|p-q| \leq \frac{b}{2s}$. Lemma 1.2 implies that $p \in B$. Let a be the nearer of $\operatorname{pred}(q)$ and $\operatorname{succ}(q)$ for shift v_i . Lemma 1.3 implies that a is a $2s\sqrt{d}$ -ANN of q. Since s = O(d), we are done.