1. **Sampling from Spheres**

In this problem we will devise efficient algorithms for sampling uniformly from the spheres of common norms in high-dimensional spaces. The norms we will look at are:

- L_1, defined as $\|x\|_1 := \sum_i |x_i|$,
- L_2, defined as $\|x\|_2 := \sqrt{\sum_i x_i^2}$, and
- L_∞, defined as $\|x\|_\infty := \max_i |x_i|$.

You may use the following theorem without proof:

Theorem 0.1 Let $\|\cdot\|$ be one of the L_1, L_2, L_∞ norms over \mathbb{R}^d. Let X be a random variable in \mathbb{R}^d with the p.d.f. $f_X < \infty$ such that

$$\|x\| = \|y\| \implies f_X(x) = f_X(y).$$

Let Z be the random variable defined as $Z = X/\|X\|$. Then Z is a uniform sample from the sphere of radius 1 in $\|\cdot\|$.

Hence the problem reduces to finding an appropriate distribution for X that is easy to sample from. (Why?) Devise such distributions for each of L_1, L_2 and L_∞, and show how to sample from them efficiently given access to random variables distributed uniformly in $[0,1]$.

Hint: For example, for L_2 the coordinates of X can be independent Gaussians.

Bonus question: Does Theorem 0.1 hold for all norms? If not, can you characterize all the norms it holds for?

2. **Convex B-Splines**

Consider a B-spline that is a closed curve such that its control path forms a convex polygon. Prove that the B-spline is the boundary of a convex region.
Hint: Use the variation diminishing property of B-splines. The variation diminishing property is that if P is a the control polygon of a curve B then for any straight line L the number of crossing of P by L is at least as large as it is for C. You do not need to prove this property for B-splines but you can use this fact.