Guidelines: Please justify all answers in a succinct (yet complete) manner. In particular, when presenting an algorithm the code if any should be presented at a high level. A full algorithm will contain the input, the output, and any loop invariants.

1. Linear Algebra
 Suppose that you are given the vectors \(P_1, \ldots, P_k \in \mathbb{R}^d \) that define the subspace
 \[
 W = \{ \alpha_1 P_1 + \cdots + \alpha_k P_k \mid \alpha_i \in \mathbb{R} \}
 \]
 show how to write \(W \) as the solution to a set of linear constraints, i.e.
 \[
 W = \{ x \in \mathbb{R}^d \mid Ax = 0 \}
 \]
 Suppose you are given a subspace as a set of constraints \(Ax = 0 \) show how one could write it as a set of generators.

2. Convex Closure
 We said that a set \(C \subset \mathbb{R}^d \) is convex if for any two points \(p \) and \(q \) in \(C \) the line segment \([p,q]\) is contained in \(C \). Let \(Q = \{ P_1, \ldots, P_k \} \subset \mathbb{R}^d \).
 In class we defined to objects:

 Definition 0.1. (a) The convex closure \(CC(Q) \) to be the smallest convex set containing \(Q \).

 (b) \(ConvexComb(Q) = \{ \alpha_1 p_1 + \cdots + \alpha_k p_k \mid \alpha_1 + \cdots + \alpha_k = 1 \text{ and } \alpha_i \geq 0 \} \)

 Show that \(CC(Q) = ConvexComb(Q) \).

3. Line Segment Intersection Test
 As pointed out in class to test proposed in class in the case when to two segments are co-linear the test may fail, bug 162082.
 Describe the problem and a solution.