CHAPTER 5

On Complexity, Sampling, and ε-Nets and ε-Samples

In this chapter we will try to quantify the notion of geometric complexity. It is intuitively clear that a ⫷ (i.e., disk) is a simpler shape than an ⫷ (i.e., ellipse), which is in turn simpler than a ⫷ (i.e., smiley). This becomes even more important when we consider several such shapes and how they interact with each other. As these examples might demonstrate, this notion of complexity is somewhat elusive.

To this end, we show that one can capture the structure of a distribution/point set by a small subset. The size here would depend on the complexity of the shapes/ranges we care about, but surprisingly it would be independent of the size of the point set.

5.1. VC dimension

Definition 5.1. A range space \mathcal{S} is a pair $(\mathcal{X}, \mathcal{R})$, where \mathcal{X} is a ground set (finite or infinite) and \mathcal{R} is a (finite or infinite) family of subsets of \mathcal{X}. The elements of \mathcal{X} are points and the elements of \mathcal{R} are ranges.

Our interest is in the size/weight of the ranges in the range space. For technical reasons, it will be easier to consider a finite subset x as the underlining ground set.

Definition 5.2. Let $\mathcal{S} = (\mathcal{X}, \mathcal{R})$ be a range space, and let x be a finite (fixed) subset of \mathcal{X}. For a range $r \in \mathcal{R}$, its measure is the quantity

$$m(r) = \frac{|r \cap x|}{|x|}.$$

While x is finite, it might be very large. As such, we are interested in getting a good estimate to $m(r)$ by using a more compact set to represent the range space.

Definition 5.3. Let $\mathcal{S} = (\mathcal{X}, \mathcal{R})$ be a range space. For a subset N (which might be a multi-set) of x, its estimate of the measure of $m(r)$, for $r \in \mathcal{R}$, is the quantity

$$\tilde{m}(r) = \frac{|r \cap N|}{|N|}.$$

The main purpose of this chapter is to come up with methods to generate a sample N, such that $m(r) \approx \tilde{m}(r)$, for all the ranges $r \in \mathcal{R}$.

It is easy to see that in the worst case, no sample can capture the measure of all ranges. Indeed, given a sample N, consider the range $x \setminus N$ that is being completely missed by N. As such, we need to concentrate on range spaces that are “low dimensional”, where not all subsets are allowable ranges. The notion of VC dimension (named after Vapnik and Chervonenkis [VC71]) is one way to limit the complexity of a range space.
5. ON COMPLEXITY, SAMPLING, AND ε-NETS AND ε-SAMPLES

Definition 5.4. Let \(S = (X, \mathcal{R}) \) be a range space. For \(Y \subseteq X \), let

\[
\mathcal{R}_Y = \left\{ r \cap Y \mid r \in \mathcal{R} \right\}
\]

denote the projection of \(\mathcal{R} \) on \(Y \). The range space \(S \) projected to \(Y \) is \(S_Y = (Y, \mathcal{R}_Y) \).

If \(\mathcal{R}_Y \) contains all subsets of \(Y \) (i.e., if \(Y \) is finite, we have \(|\mathcal{R}_Y| = 2^{|Y|} \)), then \(Y \) is shattered by \(\mathcal{R} \) (or equivalently \(Y \) is shattered by \(S \)).

The Vapnik-Chervonenkis dimension (or \(\text{VC dimension} \)) of \(S \), denoted by \(\text{dim}_{\text{VC}}(S) \), is the maximum cardinality of a shattered subset of \(X \). If there are arbitrarily large shattered subsets, then \(\text{dim}_{\text{VC}}(S) = \infty \).

5.1.1. Examples.

Intervals. Consider the set \(X \) to be the real line, and consider \(\mathcal{R} \) to be the set of all intervals on the real line. Consider the set \(Y = \{1, 2\} \). Clearly, one can find four intervals that contain all possible subsets of \(Y \). Formally, the projection \(\mathcal{R}_Y = \{1\}, \{1, 2\}, \{1\}, \{2\} \). The intervals realizing each of these subsets are depicted on the right.

However, this is false for a set of three points \(B = \{p, q, s\} \), since there is no interval that can contain the two extreme points \(p \) and \(s \) without also containing \(q \). Namely, the subset \(\{p, s\} \) is not realizable for intervals, implying that the largest shattered set by the range space (real line, intervals) is of size two. We conclude that the VC dimension of this space is two.

Disks. Let \(X = \mathbb{R}^2 \), and let \(\mathcal{R} \) be the set of disks in the plane. Clearly, for any three points in the plane (in general position), denoted by \(p, q, \) and \(s \), one can find eight disks that realize all possible \(2^3 \) different subsets. See the figure on the right.

But can disks shatter a set with four points? Consider such a set \(P \) of four points. If the convex hull of \(P \) has only three points on its boundary, then the subset \(X \) having only those three vertices (i.e., it does not include the middle point) is impossible, by convexity. Namely, there is no disk that contains only the points of \(X \) without the middle point.

Alternatively, if all four points are vertices of the convex hull and they are \(a, b, c, d \) along the boundary of the convex hull, either the set \(\{a, c\} \) or the set \(\{b, d\} \) is not realizable. Indeed, if both options are realizable, then consider the two disks \(D_1 \) and \(D_2 \) that realize those assignments. Clearly, \(\partial D_1 \) and \(\partial D_2 \) must intersect in four points, but this is not possible, since two circles have at most two intersection points. See the figure on the left. Hence the VC dimension of this range space is 3.

Convex sets. Consider the range space \(S = (\mathbb{R}^2, \mathcal{R}) \), where \(\mathcal{R} \) is the set of all (closed) convex sets in the plane. We claim that \(\text{dim}_{\text{VC}}(S) = \infty \). Indeed, consider a set \(U \) of \(n \) points \(p_1, \ldots, p_n \) all lying on the boundary of the unit circle in the plane. Let \(V \) be any subset of \(U \), and consider the convex hull \(\text{CH}(V) \). Clearly, \(\text{CH}(V) \in \mathcal{R} \), and furthermore, \(\text{CH}(V) \cap U = V \). Namely, any subset of \(U \) is realizable by \(S \). Thus, \(S \) can shatter sets of arbitrary size, and its VC dimension is unbounded.
Complement. Consider the range space \(S = (X, \mathcal{R}) \) with \(\delta = \dim_{VC}(S) \). Next, consider the complement space, \(\overline{S} = (X, \overline{\mathcal{R}}) \), where
\[
\overline{\mathcal{R}} = \{ X \setminus r \mid r \in \mathcal{R} \};
\]
namely, the ranges of \(\overline{S} \) are the complement of the ranges in \(S \). What is the VC dimension of \(\overline{S} \)? Well, a set \(B \subseteq X \) is shattered by \(\overline{S} \) if and only if it is shattered by \(S \). Indeed, if \(S \) shatters \(B \), then for any \(Z \subseteq B \), we have that \((B \setminus Z) \in \overline{\mathcal{R}}_B \), which implies that \(Z = B \setminus (B \setminus Z) \in \overline{\mathcal{R}}_B \). Namely, \(\overline{\mathcal{R}}_B \) contains all the subsets of \(B \), and \(\overline{S} \) shatters \(B \). Thus, \(\dim_{VC}(\overline{S}) = \dim_{VC}(S) \).

Lemma 5.5. For a range space \(S = (X, \mathcal{R}) \) we have that \(\dim_{VC}(S) = \dim_{VC}(\overline{S}) \), where \(\overline{S} \) is the complement range space.

5.1.1. Halfspaces. Let \(S = (X, \mathcal{R}) \), where \(X = \mathbb{R}^d \) and \(\mathcal{R} \) is the set of all (closed) halfspaces in \(\mathbb{R}^d \). We need the following technical claim.

Claim 5.6. Let \(\mathcal{P} = \{ p_1, \ldots, p_{d+2} \} \) be a set of \(d+2 \) points in \(\mathbb{R}^d \). There are real numbers \(\beta_1, \ldots, \beta_{d+2} \), not all of them zero, such that \(\sum \beta_i p_i = 0 \) and \(\sum_i \beta_i = 0 \).

Proof. Indeed, set \(q_i = (p_i, 1) \), for \(i = 1, \ldots, d+2 \). Now, the points \(q_1, \ldots, q_{d+2} \in \mathbb{R}^{d+1} \) are linearly dependent, and there are coefficients \(\beta_1, \ldots, \beta_{d+2} \), not all of them zero, such that \(\sum_{i=1}^{d+2} \beta_i q_i = 0 \). Considering only the first \(d \) coordinates of these points implies that \(\sum_{i=1}^{d+2} \beta_i p_i = 0 \). Similarly, by considering only the \((d+1) \)st coordinate of these points, we have that \(\sum_{i=1}^{d+2} \beta_i = 0 \).

To see what the VC dimension of halfspaces in \(\mathbb{R}^d \) is, we need the following result of Radon. (For a reminder of the formal definition of convex hulls, see Definition 28.1p347.)

Theorem 5.7 (Radon’s theorem). Let \(\mathcal{P} = \{ p_1, \ldots, p_{d+2} \} \) be a set of \(d+2 \) points in \(\mathbb{R}^d \). Then, there exist two disjoint subsets \(C \) and \(D \) of \(\mathcal{P} \), such that \(\mathcal{C}(C) \cap \mathcal{C}(D) \neq \emptyset \) and \(C \cup D = \mathcal{P} \).

Proof. By Claim 5.6 there are real numbers \(\beta_1, \ldots, \beta_{d+2} \), not all of them zero, such that \(\sum \beta_i p_i = 0 \) and \(\sum_i \beta_i = 0 \).

Assume, for the sake of simplicity of exposition, that \(\beta_1, \ldots, \beta_k \geq 0 \) and \(\beta_{k+1}, \ldots, \beta_{d+2} < 0 \). Furthermore, let \(\mu = \sum_{i=1}^{k} \beta_i = -\sum_{i=k+1}^{d+2} \beta_i \). We have that
\[
\sum_{i=1}^{k} \beta_i p_i = -\sum_{i=k+1}^{d+2} \beta_i p_i.
\]
In particular, \(v = \sum_{i=1}^{k}(\beta_i / \mu)p_i \) is a point in \(\mathcal{C}(\{p_1, \ldots, p_k\}) \). Furthermore, for the same point \(v \) we have \(v = \sum_{i=k+1}^{d+2}(-\beta_i / \mu)p_i \in \mathcal{C}(\{p_{k+1}, \ldots, p_{d+2}\}) \). We conclude that \(v \) is in the intersection of the two convex hulls, as required.

The following is a trivial observation, and yet we provide a proof to demonstrate it is true.

Lemma 5.8. Let \(\mathcal{P} \subseteq \mathbb{R}^d \) be a finite set, let \(s \) be any point in \(\mathcal{C}(\mathcal{P}) \), and let \(h^+ \) be a halfspace of \(\mathbb{R}^d \) containing \(s \). Then there exists a point of \(\mathcal{P} \) contained inside \(h^+ \).
Proof. The halfspace \(h^+ \) can be written as \(h^+ = \{ t \in \mathbb{R}^d \mid \langle t, v \rangle \leq c \} \). Now \(s \in CH(P) \cap h^+ \), and as such there are numbers \(\alpha_1, \ldots, \alpha_m \geq 0 \) and points \(p_1, \ldots, p_m \in P \), such that \(\sum_i \alpha_i = 1 \) and \(\sum_i \alpha_i p_i = s \). By the linearity of the dot product, we have that
\[
\alpha \in h^+ \implies \langle \alpha, v \rangle \leq c \implies \left(\sum_{i=1}^m \alpha_i \langle p_i, v \rangle \right) \leq c \implies \beta = \sum_{i=1}^m \alpha_i \langle p_i, v \rangle \leq c.
\]
Setting \(\beta_i = \langle p_i, v \rangle \), for \(i = 1, \ldots, m \), the above implies that \(\beta \) is a weighted average of \(\beta_1, \ldots, \beta_m \). In particular, there must be a \(\beta_i \) that is no larger than the average. That is \(\beta_i \leq c \). This implies that \(\langle p_i, v \rangle \leq c \). Namely, \(p_i \in h^+ \) as claimed.

Let \(S \) be the range space having \(\mathbb{R}^d \) as the ground set and all the close halfspaces as ranges. Radon’s theorem implies that if a set \(Q \) of \(d + 2 \) points is being shattered by \(S \), then we can partition this set \(Q \) into two disjoint sets \(Y \) and \(Z \) such that \(CH(Y) \cap CH(Z) \neq \emptyset \). In particular, let \(s \) be a point in \(CH(Y) \cap CH(Z) \). If a halfspace \(h^+ \) contains all the points of \(Y \), then \(CH(Y) \subseteq h^+ \), since a halfspace is a convex set. Thus, any halfspace \(h^+ \) containing all the points of \(Y \) will contain the point \(s \in CH(Y) \). But \(s \in CH(Z) \cap h^+ \), and this implies that a point of \(Z \) must lie in \(h^+ \), by Lemma 5.8. Namely, the subset \(Y \subseteq Q \) cannot be realized by a halfspace, which implies that \(Q \) cannot be shattered. Thus \(\dim_{VC}(S) < d + 2 \). It is also easy to verify that the regular simplex with \(d + 1 \) vertices is shattered by \(S \). Thus, \(\dim_{VC}(S) = d + 1 \).

5.2. Shattering dimension and the dual shattering dimension

The main property of a range space with bounded VC dimension is that the number of ranges for a set of \(n \) elements grows polynomially in \(n \) (with the power being the dimension) instead of exponentially. Formally, let the growth function be
\[
\mathcal{G}_\delta(n) = \sum_{i=0}^{\delta} \binom{n}{i} \leq \sum_{i=0}^{\delta} \frac{n^i}{i!} \leq n^\delta,
\]
for \(\delta > 1 \) (the cases where \(\delta = 0 \) or \(\delta = 1 \) are not interesting and we will just ignore them). Note that for all \(n, \delta \geq 1 \), we have \(\mathcal{G}_\delta(n) = \mathcal{G}_\delta(n-1) + \mathcal{G}_{\delta-1}(n-1) \).

Lemma 5.9 (Sauer’s lemma). If \((X, \mathcal{R}) \) is a range space of VC dimension \(\delta \) with \(|X| = n \), then \(|\mathcal{R}| \leq \mathcal{G}_\delta(n) \).

Proof. The claim trivially holds for \(\delta = 0 \) or \(n = 0 \).
Let \(x \) be any element of \(X \), and consider the sets
\[
\mathcal{R}_x = \left\{ r \setminus \{x\} \mid r \cup \{x\} \in \mathcal{R} \text{ and } r \setminus \{x\} \in \mathcal{R} \right\} \quad \text{and} \quad \mathcal{R} \setminus x = \left\{ r \setminus \{x\} \mid r \in \mathcal{R} \right\}.
\]
Observe that \(|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x| \). Indeed, we charge the elements of \(\mathcal{R} \) to their corresponding element in \(\mathcal{R} \setminus x \). The only bad case is when there is a range \(r \) such that both \(r \cup \{x\} \in \mathcal{R} \) and \(r \setminus \{x\} \in \mathcal{R} \), because then these two distinct ranges get mapped to the same range in \(\mathcal{R} \setminus x \). But such ranges contribute exactly one element to \(\mathcal{R}_x \). Similarly, every element of \(\mathcal{R}_x \) corresponds to two such “twin” ranges in \(\mathcal{R} \).

\[\vdots\]Here is a cute (and standard) counting argument: \(\mathcal{G}_\delta(n) \) is just the number of different subsets of size at most \(\delta \) out of \(n \) elements. Now, we either decide to not include the first element in these subsets (i.e., \(\mathcal{G}_\delta(n-1) \)) or, alternatively, we include the first element in these subsets, but then there are only \(\delta - 1 \) elements left to pick (i.e., \(\mathcal{G}_{\delta-1}(n-1) \)).
Observe that \((X \setminus \{x\}, R_x)\) has VC dimension \(\delta - 1\), as the largest set that can be shattered is of size \(\delta - 1\). Indeed, any set \(B \subset X \setminus \{x\}\) shattered by \(R_x\) implies that \(B \cup \{x\}\) is shattered in \(R\).

Thus, we have

\[
|R| = |R_x| + |R \setminus x| \leq \mathcal{G}_{\delta-1}(n-1) + \mathcal{G}_\delta(n-1) = \mathcal{G}_\delta(n),
\]

by induction.

Interestingly, Lemma 5.9 is tight. See Exercise 5.4.

Next, we show pretty tight bounds on \(\mathcal{G}_\delta(n)\). The proof is technical and not very interesting, and it is delegated to Section 5.6.

Lemma 5.10. For \(n \geq 2\delta\) and \(\delta \geq 1\), we have

\[
\left(\frac{n}{\delta}\right)^\delta \leq \mathcal{G}_\delta(n) \leq 2\left(\frac{ne}{\delta}\right)^\delta,
\]

where

\[
\mathcal{G}_\delta(n) = \sum_{i=0}^{\delta} \binom{n}{i}.
\]

Definition 5.11 (Shatter function). Given a range space \(S = (X, R)\), its **shatter function** \(\pi_S(m)\) is the maximum number of sets that might be created by \(S\) when restricted to subsets of size \(m\). Formally,

\[
\pi_S(m) = \max_{B \subseteq X} |R_B|:
\]

see (5.1).

The **shattering dimension** of \(S\) is the smallest \(d\) such that \(\pi_S(m) = O(m^d)\), for all \(m\).

By applying Lemma 5.9 to a finite subset of \(X\), we get:

Corollary 5.12. If \(S = (X, R)\) is a range space of VC dimension \(\delta\), then for every finite subset \(B\) of \(X\), we have \(|R_B| \leq \pi_S(|B|) \leq \mathcal{G}_\delta(|B|)\). That is, the VC dimension of a range space always bounds its shattering dimension.

Proof. Let \(n = |B|\), and observe that \(|R_B| \leq \mathcal{G}_\delta(n) \leq n^\delta\), by (5.2). As such, \(|R_B| \leq n^\delta\), and, by definition, the shattering dimension of \(S\) is at most \(\delta\); namely, the shattering dimension is bounded by the VC dimension.

Our arch-nemesis in the following is the function \(x/\ln x\). The following lemma states some properties of this function, and its proof is delegated to Exercise 5.2.

Lemma 5.13. For the function \(f(x) = x/\ln x\) the following hold.

(A) \(f(x)\) is monotonically increasing for \(x \geq e\).

(B) \(f(x) \geq e\), for \(x > 1\).

(C) For \(u \geq \sqrt{e}\), if \(f(x) \leq u\), then \(x \leq 2u \ln u\).

(D) For \(u \geq \sqrt{e}\), if \(x > 2u \ln u\), then \(f(x) > u\).

(E) For \(u \geq e\), if \(f(x) \geq u\), then \(x \geq u \ln u\).

The next lemma introduces a standard argument which is useful in bounding the VC dimension of a range space by its shattering dimension. It is easy to see that the bound is tight in the worst case.

Lemma 5.14. If \(S = (X, R)\) is a range space with shattering dimension \(d\), then its VC dimension is bounded by \(O(d \log d)\).
5. ON COMPLEXITY, SAMPLING, AND \(\varepsilon \)-NETS AND \(\varepsilon \)-SAMPLES

Proof. Let \(N \subseteq X \) be the largest set shattered by \(S \), and let \(\delta \) denote its cardinality. We have that \(2^\delta = |R_N| \leq \pi_S(|N|) \leq c \delta^d \), where \(c \) is a fixed constant. As such, we have that \(\delta \leq \lg c + d \lg \delta \), which in turn implies that \(\frac{\delta - \lg c}{\lg \delta} \leq d \). Assuming \(\delta \geq \max(2, 2 \lg c) \), we have that

\[
\frac{\delta}{2 \lg \delta} \leq d \implies \frac{\delta}{\ln \delta} \leq \frac{2d}{\ln 2} \leq 6d \implies \delta \leq 2(6d) \ln(6d),
\]

by Lemma 5.13(C).

Disks revisited. To see why the shattering dimension is more convenient to work with than the VC dimension, consider the range space \(S = (X, \mathcal{R}) \), where \(X = \mathbb{R}^2 \) and \(\mathcal{R} \) is the set of disks in the plane. We know that the VC dimension of \(S \) is 3 (see Section 5.1.1).

We next use a standard continuous deformation argument to argue that the shattering dimension of this range space is also 3.

Lemma 5.15. Consider the range space \(S = (X, \mathcal{R}) \), where \(X = \mathbb{R}^2 \) and \(\mathcal{R} \) is the set of disks in the plane. The shattering dimension of \(S \) is 3.

Proof. Consider any set \(P \) of \(n \) points in the plane, and consider the set \(\mathcal{F} = \mathcal{R}_P \). We claim that \(|\mathcal{F}| \leq 4n^3 \).

The set \(\mathcal{F} \) contains only \(n \) sets with a single point in them and only \(\binom{n}{2} \) sets with two points in them. So, fix \(Q \in \mathcal{F} \) such that \(|Q| \geq 3 \).

There is a disk \(D \) that realizes this subset; that is, \(P \cap D = Q \). For the sake of simplicity of exposition, assume that \(P \) is in general position. Shrink \(D \) till its boundary passes through a point \(p \) of \(P \).

Now, continue shrinking the new disk \(D' \) in such a way that its boundary passes through the point \(p \) (this can be done by moving the center of \(D' \) towards \(p \)). Continue in this continuous deformation till the new boundary hits another point \(q \) of \(P \). Let \(D'' \) denote this disk.

Next, we continuously deform \(D'' \) so that it has both \(p \in Q \) and \(q \in Q \) on its boundary. This can be done by moving the center of \(D'' \) along the bisector linear between \(p \) and \(q \). Stop as soon as the boundary of the disk hits a third point \(s \in P \). (We have freedom in choosing in which direction to move the center. As such, move in the direction that causes the disk boundary to hit a new point \(s \).) Let \(\widehat{D} \) be the resulting disk. The boundary of \(\widehat{D} \) is the unique circle passing through \(p, q, \) and \(s \). Furthermore, observe that

\[
D \cap \left(P \setminus \{s\} \right) = \widehat{D} \cap \left(P \setminus \{s\} \right).
\]

\(^{\text{We remind the reader that } \lg = \log_2.}\)
That is, we can specify the point set $P \cap D$ by specifying the three points p, q, s (and thus specifying the disk D) and the status of the three special points; that is, we specify for each point p, q, s whether or not it is inside the generated subset.

As such, there are at most $8\binom{n}{3}$ different subsets in F containing more than three points, as each such subset maps to a “canonical” disk, there are at most $\binom{n}{3}$ different such disks, and each such disk defines at most eight different subsets.

Similar argumentation implies that there are at most $4\binom{n}{2}$ subsets that are defined by a pair of points that realizes the diameter of the resulting disk. Overall, we have that

$$|F| = 1 + n + 4\binom{n}{2} + 8\binom{n}{3} \leq 4n^3,$$

since there is one empty set in F, n sets of size 1, and the rest of the sets are counted as described above.

The proof of Lemma 5.15 might not seem like a great simplification over the same bound we got by arguing about the VC dimension. However, the above argumentation gives us a very powerful tool – the shattering dimension of a range space defined by a family of shapes is always bounded by the number of points that determine a shape in the family.

Thus, the shattering dimension of, say, arbitrarily oriented rectangles in the plane is bounded by (and in this case, equal to) five, since such a rectangle is uniquely determined by five points. To see that, observe that if a rectangle has only four points on its boundary, then there is one degree of freedom left, since we can rotate the rectangle “around” these points; see the figure on the right.

5.2.1. The dual shattering dimension.

Given a range space $S = (X, \mathcal{R})$, consider a point $p \in X$. There is a set of ranges of \mathcal{R} associated with p, namely, the set of all ranges of \mathcal{R} that contains p which we denote by

$$\mathcal{R}_p = \{ r \mid r \in \mathcal{R}, \text{ the range } r \text{ contains } p \}.$$

This gives rise to a natural dual range space to S.

Definition 5.16. The dual range space to a range space $S = (X, \mathcal{R})$ is the space $S^* = (\mathcal{R}, X^*)$, where $X^* = \{ \mathcal{R}_p \mid p \in X \}$.

Naturally, the dual range space to S^* is the original S, which is thus sometimes referred to as the primal range space. (In other words, the dual to the dual is the primal.) The easiest way to see this, is to think about it as an abstract set system realized as an incidence matrix, where each point is a column and a set is a row in the matrix having 1 in an entry if and only if it contains the corresponding point; see Figure 5.1. Now, it is easy to verify that the dual range space is the transposed matrix.

To understand what the dual space is, consider X to be the plane and \mathcal{R} to be a set of m disks. Then, in the dual range space $S^* = (\mathcal{R}, X^*)$, every point p in the plane has a set associated with it in X^*, which is the set of disks of \mathcal{R} that contains p. In particular, if we consider the arrangement formed by the m disks of \mathcal{R}, then all the points lying inside a single face of this arrangement correspond to the same set of X^*. The number of ranges in X^* is bounded by the complexity of the arrangement of these disks, which is $O(m^2)$; see Figure 5.1.
5. ON COMPLEXITY, SAMPLING, AND ε-NETS AND ε-SAMPLES

Let the dual shatter function of the range space S be $\pi^*_S(m) = \pi_{S^*}(m)$, where S^* is the dual range space to S.

Definition 5.17. The dual shattering dimension of S is the shattering dimension of the dual range space S^*.

Note that the dual shattering dimension might be smaller than the shattering dimension and hence also smaller than the VC dimension of the range space. Indeed, in the case of disks in the plane, the dual shattering dimension is just 2, while the VC dimension and the shattering dimension of this range space is 3. Note, also, that in geometric settings bounding the dual shattering dimension is relatively easy, as all you have to do is bound the complexity of the arrangement of m ranges of this space.

The following lemma shows a connection between the VC dimension of a space and its dual. The interested reader\footnote[1]{The author is quite aware that the interest of the reader in this issue might not be the result of free choice. Nevertheless, one might draw some comfort from the realization that the existence of the interested reader is as much an illusion as the existence of free choice. Both are convenient to assume, and both are probably false. Or maybe not.} might find the proof amusing.

Lemma 5.18. Consider a range space $S = (X, R)$ with VC dimension δ. The dual range space $S^* = (R, X^*)$ has VC dimension bounded by $2^{\delta+1}$.

Proof. Assume that S^* shatters a set $F = \{r_1, \ldots, r_k\} \subseteq R$ of k ranges. Then, there is a set $P \subseteq X$ of $m = 2^k$ points that shatters F. Formally, for every subset $V \subseteq F$, there exists a point $p \in P$, such that $F_p = V$.

So, consider the matrix M (of dimensions $k \times 2^k$) having the points p_1, \ldots, p_{2^k} of P as the columns, and every row is a set of F, where the entry in the matrix corresponding to a point $p \in P$ and a range $r \in F$ is 1 if and only if $p \in r$ and zero otherwise. Since P shatters F, we know that this matrix has all possible 2^k binary vectors as columns.
implies that \(r \) of ranges of space and complexity of the arrangement of \(\mathcal{VC} \) the plane, so that the boundary of any pair of them intersects at most 2 range space to such, by Lemma 5.14, its \(\lg \) tical (in the relevant \(\lg \)).

Consider the range space \(\mathcal{R} \) that encodes this subset. Clearly, the \(\lg \) columns of \(\mathcal{M}' \) are all different, and we can find \(\lg \kappa' \) columns of \(\mathcal{M} \) that are identical to the columns of \(\mathcal{M}' \) (in the first \(\kappa' \) entries starting from the top of the columns).

Each such column corresponds to a point \(p \in \mathcal{P} \), and let \(Q \subseteq \mathcal{P} \) be this set of \(\lg \kappa' \) points. Note that for any subset \(Z \subseteq Q \), there is a row \(t \) in \(\mathcal{M}' \) that encodes this subset. Consider the corresponding row in \(\mathcal{M} \); that is, the range \(r_t \in \mathcal{F} \). Since \(\mathcal{M} \) and \(\mathcal{M}' \) are identical (in the relevant \(\lg \kappa' \) columns of \(\mathcal{M} \)) on the first \(\kappa' \), we have that \(r_t \cap Q = Z \). Namely, the set of ranges \(\mathcal{F} \) shatters \(Q \). But since the original range space has \(\mathcal{VC} \) dimension \(\delta \), it follows that \(|Q| \leq \delta \). Namely, \(|Q| = \lg \kappa' = |\lg k| \leq \delta \), which implies that \(\lg k \leq \delta + 1 \), which in turn implies that \(k \leq 2^{\delta + 1} \).

\[\text{Lemma 5.19. If a range space } \mathcal{S} = (\mathcal{X}, \mathcal{R}) \text{ has dual shattering dimension } \delta, \text{ then its } \mathcal{VC} \text{ dimension is bounded by } \delta^{O(\delta)}. \]

\[\text{Proof. The shattering dimension of the dual range space } \mathcal{S}^* \text{ is bounded by } \delta, \text{ and as such, by Lemma 5.14, its } \mathcal{VC} \text{ dimension is bounded by } \delta' = O(\delta \log \delta). \text{ Since the dual range space to } \mathcal{S}^* \text{ is } \mathcal{S}, \text{ we have by Lemma 5.18 that the } \mathcal{VC} \text{ dimension of } \mathcal{S} \text{ is bounded by } 2^{\delta + 1} = \delta^{O(\delta)}. \]

The bound of Lemma 5.19 might not be pretty, but it is sufficient in a lot of cases to bound the \(\mathcal{VC} \) dimension when the shapes involved are simple.

\[\text{Example 5.20. Consider the range space } \mathcal{S} = (\mathbb{R}^2, \mathcal{R}), \text{ where } \mathcal{R} \text{ is a set of shapes in the plane, so that the boundary of any pair of them intersects at most } s \text{ times. Then, the } \mathcal{VC} \text{ dimension of } \mathcal{S} \text{ is } O(1). \text{ Indeed, the dual shattering dimension of } \mathcal{S} \text{ is } O(1), \text{ since the complexity of the arrangement of } n \text{ such shapes is } O(sn^2). \text{ As such, by Lemma 5.19, the } \mathcal{VC} \text{ dimension of } \mathcal{S} \text{ is } O(1). \]

5.2.1.1 Mixing range spaces.

\[\text{Lemma 5.21. Let } \mathcal{S} = (\mathcal{X}, \mathcal{R}) \text{ and } \mathcal{T} = (\mathcal{X}, \mathcal{R}') \text{ be two range spaces of } \mathcal{VC} \text{ dimension } \delta \text{ and } \delta', \text{ respectively, where } \delta, \delta' > 1. \text{ Let } \tilde{\mathcal{R}} = \left\{ r \cup r' \mid r \in \mathcal{R}, r' \in \mathcal{R}' \right\}. \text{ Then, for the range space } \tilde{\mathcal{S}} = (\mathcal{X}, \tilde{\mathcal{R}}), \text{ we have that } \text{dim}_{\mathcal{VC}}(\tilde{\mathcal{S}}) = O(\delta + \delta'). \]

\[\text{Proof. As a warm-up exercise, we prove a somewhat weaker bound here of } O((\delta + \delta') \log(\delta + \delta')). \text{ The stronger bound follows from Theorem 5.22 below. Let } B \text{ be a set of } n \text{ points in } \mathcal{X} \text{ that are shattered by } \tilde{\mathcal{S}}. \text{ There are at most } \mathcal{S}_\delta(n) \text{ and } \mathcal{S}_{\delta'}(n) \text{ different ranges of } B \text{ in the range sets } \mathcal{R}_B \text{ and } \mathcal{R}'_B, \text{ respectively, by Lemma 5.9. Every subset } C \text{ of } B \text{ realized by } \tilde{r} \in \tilde{\mathcal{R}} \text{ is a union of two subsets } B \cap r \text{ and } B \cap r', \text{ where } r \in \mathcal{R} \text{ and } r' \in \mathcal{R}', \text{ respectively. Thus, the number of different subsets of } B \text{ realized by } \tilde{\mathcal{S}} \text{ is bounded by } \mathcal{S}_\delta(n)\mathcal{S}_{\delta'}(n). \text{ Thus, } 2^n \leq n^\delta n^{\delta'}, \text{ for } \delta, \delta' > 1. \text{ We conclude that } n \leq (\delta + \delta') \log n, \text{ which implies that } n = O((\delta + \delta') \log(\delta + \delta')), \text{ by Lemma 5.13(C).} \]
Interestingly, one can prove a considerably more general result with tighter bounds. The required computations are somewhat more painful.

Theorem 5.22. Let $S_1 = (X, \mathcal{R}_1), \ldots, S_k = (X, \mathcal{R}_k)$ be range spaces with VC dimension $\delta_1, \ldots, \delta_k$, respectively. Next, let $f(r_1, \ldots, r_k)$ be a function that maps any k-tuple of sets $r_1 \in \mathcal{R}_1, \ldots, r_k \in \mathcal{R}_k$ into a subset of X. Consider the range set

$$R' = \left\{ f(r_1, \ldots, r_k) \mid r_1 \in \mathcal{R}_1, \ldots, r_k \in \mathcal{R}_k \right\}$$

and the associated range space $T = (X, R')$. Then, the VC dimension of T is bounded by $O(k\delta \lg k)$, where $\delta = \max_i \delta_i$.

Proof. Assume a set $Y \subseteq X$ of size t is being shattered by R', and observe that

$$|R'_Y| \leq \left| \left\{ (r_1, \ldots, r_k) \mid r_1 \in R^i_1, \ldots, r_k \in R^i_k \right\} \right| \leq |R^1_Y| \cdots |R^k_Y| \leq \beta_1(t) \cdot \beta_2(t) \cdots \beta_k(t),$$

by Lemma 5.9 and Lemma 5.10. On the other hand, since Y is being shattered by R', this implies that $|R'_Y| = 2^t$. Thus, we have the inequality $2^t \leq \left(2(t/\delta)^k\right)$, which implies $t \leq k(1 + \delta \lg (t/\delta))$. Assume that $t \geq e$ and $\delta \lg (t/\delta) \geq 1$ since otherwise the claim is trivial, and observe that $t \leq k(1 + \delta \lg (t/\delta)) \leq 3k\delta \lg (t/\delta)$. Setting $x = t/\delta$, we have

$$\frac{t}{\delta} \leq 3k \frac{\ln(t/\delta)}{\ln 2} \leq 6k \frac{t}{\delta} \ln x \leq 6k \Rightarrow x \leq 2 \cdot 6k \ln(6k) \Rightarrow x \leq 12k \ln(6k),$$

by Lemma 5.13(C). We conclude that $t \leq 12\delta k \ln(6k)$, as claimed. \qed

Corollary 5.23. Let $S = (X, \mathcal{R})$ and $T = (X, \mathcal{R}')$ be two range spaces of VC dimension δ and δ', respectively, where $\delta, \delta' > 1$. Let $\mathcal{R} = \left\{ r \cap r' \mid r \in \mathcal{R}, r' \in \mathcal{R}' \right\}$. Then, for the range space $\mathcal{S} = (X, \mathcal{R})$, we have that $\text{dim}_{\text{VC}}(\mathcal{S}) = O(\delta + \delta')$.

Corollary 5.24. Any finite sequence of combining range spaces with finite VC dimension (by intersecting, complementing, or taking their union) results in a range space with a finite VC dimension.

5.3. On ε-nets and ε-sampling

5.3.1. ε-nets and ε-samples.

Definition 5.25 (\varepsilon-sample). Let $S = (X, \mathcal{R})$ be a range space, and let x be a finite subset of X. For $0 \leq \varepsilon \leq 1$, a subset $C \subseteq x$ is an ε-sample for x if for any range $r \in \mathcal{R}$, we have

$$\left| \overline{m}(r) - \overline{3}(r) \right| \leq \varepsilon,$$

where $\overline{m}(r) = |x \cap r| / |x|$ is the measure of r (see Definition 5.2) and $\overline{3}(r) = |C \cap r| / |C|$ is the estimate of r (see Definition 5.3). (Here C might be a multi-set, and as such $|C \cap r|$ is counted with multiplicity.)

As such, an ε-sample is a subset of the ground set x that “captures” the range space up to an error of ε. Specifically, to estimate the fraction of the ground set covered by a range r, it is sufficient to count the points of C that fall inside r.

If X is a finite set, we will abuse notation slightly and refer to C as an ε-sample for S.

5.3. ON ϵ-NETS AND ϵ-SAMPLING

To see the usage of such a sample, consider $x = X$ to be, say, the population of a country (i.e., an element of X is a citizen). A range in R is the set of all people in the country that answer yes to a question (i.e., would you vote for party Y?, would you buy a bridge from me?, questions like that). An ϵ-sample of this range space enables us to estimate reliably (up to an error of ϵ) the answers for all these questions, by just asking the people in the sample.

The natural question of course is how to find such a subset of small (or minimal) size.

Theorem 5.26 (ϵ-sample theorem, [VC71]). There is a positive constant c such that if (X,R) is any range space with VC dimension at most δ, $x \subseteq X$ is a finite subset and $\epsilon, \varphi > 0$, then a random subset $C \subseteq x$ of cardinality

$$s = \frac{c}{\epsilon^2} \left(\delta \log \frac{\delta}{\epsilon} + \log \frac{1}{\varphi} \right)$$

is an ϵ-sample for x with probability at least $1 - \varphi$.

(In the above theorem, if $s > |x|$, then we can just take all of x to be the ϵ-sample.)

For a strengthened version of the above theorem with slightly better bounds, see Theorem 7.13 p107.

Sometimes it is sufficient to have (hopefully smaller) samples with a weaker property – if a range is “heavy”, then there is an element in our sample that is in this range.

Definition 5.27 (ϵ-net). A set $N \subseteq x$ is an ϵ-net for x if for any range $r \in R$, if $m(r) \geq \epsilon$ (i.e., $|r \cap x| \geq \epsilon |x|$), then r contains at least one point of N (i.e., $r \cap N \neq \emptyset$).

Theorem 5.28 (ϵ-net theorem, [HW87]). Let (X,R) be a range space of VC dimension δ, let x be a finite subset of X, and suppose that $0 < \epsilon \leq 1$ and $\varphi < 1$. Let N be a set obtained by m random independent draws from x, where

$$m \geq \max \left(\frac{4 |x|}{\epsilon}, \frac{1}{\epsilon}, \frac{4 \delta}{\epsilon}, \frac{1}{\epsilon} \frac{16}{\epsilon} \right).$$

Then N is an ϵ-net for x with probability at least $1 - \varphi$.

(We remind the reader that $\lg = \log_2$.)

The proofs of the above theorems are somewhat involved and we first turn our attention to some applications before presenting the proofs.

Remark 5.29. The above two theorems also hold for spaces with shattering dimension at most δ, in which case the sample size is slightly larger. Specifically, for Theorem 5.28, the sample size needed is $O\left(\frac{1}{\epsilon} \frac{1}{\varphi} + \frac{1}{\epsilon} \frac{\delta}{\epsilon} \right)$.

5.3.2. Some applications. We mention two (easy) applications of these theorems, which (hopefully) demonstrate their power.

5.3.2.1. Range searching. So, consider a (very large) set of points P in the plane. We would like to be able to quickly decide how many points are included inside a query rectangle. Let us assume that we allow ourselves 1% error. What Theorem 5.26 tells us is that there is a subset of constant size (that depends only on ϵ) that can be used to perform this estimation, and it works for all query rectangles (we used here the fact that rectangles in the plane have finite VC dimension). In fact, a random sample of this size works with constant probability.
5.3.2.2. **Learning a concept.** Assume that we have a function f defined in the plane that returns ‘1’ inside an (unknown) disk D_{unknown} and ‘0’ outside it. There is some distribution D defined over the plane, and we pick points from this distribution. Furthermore, we can compute the function for these labels (i.e., we can compute f for certain values, but it is expensive). For a mystery value $\varepsilon > 0$, to be explained shortly, Theorem 5.28 tells us to pick (roughly) $O((1/\varepsilon) \log(1/\varepsilon))$ random points in a sample R from this distribution and to compute the labels for the samples. This is demonstrated in the figure on the right, where black dots are the sample points for which $f(\cdot)$ returned 1.

So, now we have positive examples and negative examples. We would like to find a hypothesis that agrees with all the samples we have and that hopefully is close to the true unknown disk underlying the function f. To this end, compute the smallest disk D that contains the sample labeled by ‘1’ and does not contain any of the ‘0’ points, and let $g : \mathbb{R}^2 \to \{0, 1\}$ be the function g that returns ‘1’ inside the disk and ‘0’ otherwise. We claim that g classifies correctly all but an ε-fraction of the points (i.e., the probability of misclassifying a point picked according to the given distribution is smaller than ε); that is, $\Pr_{p \sim D} [f(p) \neq g(p)] \leq \varepsilon$.

Geometrically, the region where g and f disagree is all the points in the symmetric difference between the two disks. That is, $E = D \oplus D_{\text{unknown}}$; see the figure on the right.

Thus, consider the range space S having the plane as the ground set and the symmetric difference between any two disks as its ranges. By Corollary 5.24, this range space has finite VC dimension. Now, consider the (unknown) disk D' that induces f and the region $r = D_{\text{unknown}} \oplus D$. Clearly, the learned classifier g returns incorrect answers only for points picked inside r.

Thus, the probability of a mistake in the classification is the measure of r under the distribution D. So, if $\Pr_D \left[r \right] > \varepsilon$ (i.e., the probability that a sample point falls inside r), then by the ε-net theorem (i.e., Theorem 5.28) the set R is an ε-net for S (ignore for the time being the possibility that the random sample fails to be an ε-net) and as such, R contains a point q inside r. But, it is not possible for g (which classifies correctly all the sampled points of R) to make a mistake on q, a contradiction, because by construction, the range r is where g misclassifies points. We conclude that $\Pr_D \left[r \right] \leq \varepsilon$, as desired.

Little lies. The careful reader might be tearing his or her hair out because of the above description. First, Theorem 5.28 might fail, and the above conclusion might not hold. This is of course true, and in real applications one might use a much larger sample to guarantee that the probability of failure is so small that it can be practically ignored. A more serious issue is that Theorem 5.28 is defined only for finite sets. Nowhere does it speak about a continuous distribution. Intuitively, one can approximate a continuous distribution to an
arbitrary precision using a huge sample and apply the theorem to this sample as our ground set. A formal proof is more tedious and requires extending the proof of Theorem 5.28 to continuous distributions. This is straightforward and we will ignore this topic altogether.

5.3.2.3. A naive proof of the ε-sample theorem. To demonstrate why the ε-sample/net theorems are interesting, let us try to prove the ε-sample theorem in the natural naive way. Thus, consider a finite range space $\mathcal{S} = (X, \mathcal{R})$ with shattering dimension δ. Also, consider a range r that contains, say, a p fraction of the points of X, where $p \geq \varepsilon$. Consider a random sample \mathcal{R} of r points from X, picked with replacement.

Let p_i be the ith sample point, and let X_i be an indicator variable which is one if and only if $p_i \in r$. Clearly, $(\sum X_i)/r$ is an estimate for $p = |r \cap X|/|X|$. We would like this estimate to be within $\pm \varepsilon$ of p and with confidence $\geq 1 - \varphi$.

As such, the sample failed if $|\sum_{i=1}^r X_i - pr| \geq \varepsilon r = (\varepsilon/p)pr$. Set $\phi = \varepsilon/p$ and $\mu = E[\sum X_i] = pr$. Using Chernoff’s inequality (Theorem 27.17$_{p340}$ and Theorem 27.18$_{p341}$), we have

$$\Pr\left(\left|\sum_{i=1}^r X_i - \mu \right| \geq \phi \mu \right) \leq \exp(-\mu \phi^2/2) + \exp(-\mu \phi^2/4) \leq 2 \exp(-\mu \phi^2/4) = 2 \exp\left(-\frac{\varepsilon^2}{4pr}\right) \leq \varphi,$$

for $r \geq \frac{4}{\varepsilon^2} \ln \frac{2}{\varphi}$.

Voila! We proved the ε-sample theorem. Well, not quite. We proved that the sample works correctly for a single range. Namely, we proved that for a specific range $r \in \mathcal{R}$, we have that $\Pr\left(\left|\bar{m}(r) - \bar{x}(r)\right| > \varepsilon \right) \leq \varphi$. However, we need to prove that $\forall r \in \mathcal{R}$,

$$\Pr\left(\left|\bar{m}(r) - \bar{x}(r)\right| > \varepsilon \right) \leq \varphi.$$

Now, naively, we can overcome this by using a union bound on the bad probability. Indeed, if there are k different ranges under consideration, then we can use a sample that is large enough such that the probability of it to fail for each range is at most φ/k. In particular, let E_i be the bad event that the sample fails for the ith range. We have that $\Pr[E_i] \leq \varphi/k$, which implies that

$$\Pr[\text{sample fails for any range}] \leq \Pr\left(\bigcup_{i=1}^k E_i\right) \leq \sum_{i=1}^k \Pr[E_i] \leq k(\varphi/k) \leq \varphi,$$

by the union bound; that is, the sample works for all ranges with good probability.

However, the number of ranges that we need to prove the theorem for is $\pi_S(|x|)$ (see Definition 5.11). In particular, if we plug in confidence $\varphi/\pi_S(|x|)$ to the above analysis and use the union bound, we get that for

$$r \geq \frac{4}{\varepsilon^2} \ln \frac{\pi_S(|x|)}{\varphi^2},$$

the sample estimates correctly (up to $\pm \varepsilon$) the size of all ranges with confidence $\geq 1 - \varphi$. Bounding $\pi_S(|x|)$ by $O(|x|^d)$ (using (5.2)$_{p64}$ for a space with VC dimension δ), we can bound the required size of r by $O(\delta \varepsilon^{-2} \log(|x|/\varphi))$. We summarize the result.

Lemma 5.30. Let (X, \mathcal{R}) be a finite range space with VC dimension at most δ, and let $\varepsilon, \varphi > 0$ be parameters. Then a random subset $C \subseteq x$ of cardinality $O(\delta \varepsilon^{-2} \log(|x|/\varphi))$ is an ε-sample for x with probability at least $1 - \varphi$.

Namely, the “naive” argumentation gives us a sample bound which depends on the underlying size of the ground set. However, the sample size in the ε-sample theorem (Theorem 5.26) is independent of the size of the ground set. This is the magical property of the ε-sample theorem.8

Interestingly, using a chaining argument on Lemma 5.30, one can prove the ε-sample theorem for the finite case; see Exercise 5.3. We provide a similar proof when using discrepancy, in Section 5.4. However, the original proof uses a clever double sampling idea that is both interesting and insightful that makes the proof work for the infinite case also.

5.3.3. A quicky proof of the ε-net theorem (Theorem 5.28). Here we provide a sketchy proof of Theorem 5.28, which conveys the main ideas. The full proof in all its glory and details is provided in Section 5.5.

Let \(N = (x_1, \ldots, x_m) \) be the sample obtained by \(m \) independent samples from \(x \) (observe that \(N \) might contain the same element several times, and as such it is a multi-set). Let \(E_1 \) be the probability that \(N \) fails to be an ε-net. Namely, for \(n = |x| \), let

\[
E_1 = \left\{ \exists r \in \mathcal{R} \mid |r \cap x| \geq \varepsilon n \text{ and } r \cap N = \emptyset \right\}.
\]

To complete the proof, we must show that \(\Pr[E_1] \leq \varepsilon \).

Let \(T = (y_1, \ldots, y_m) \) be another random sample generated in a similar fashion to \(N \). It might be that \(N \) fails for a certain range \(r \), but then since \(T \) is an independent sample, we still expect that \(|r \cap T| = \varepsilon m \). In particular, the probability that \(\Pr[|r \cap T| \geq \frac{\varepsilon m}{2}] \) is a large constant close to 1, regardless of how \(N \) performs. Indeed, if \(m \) is sufficiently large, we expect the random variable \(|r \cap T| \) to concentrate around \(\varepsilon m \), and one can argue this formally using Chernoff’s inequality. Namely, intuitively, for a heavy range \(r \) we have that

\[
\Pr[r \cap N = \emptyset] \approx \Pr[r \cap N = \emptyset \text{ and } |r \cap T| \geq \varepsilon m / 2].
\]

Inspired by this, let \(E_2 \) be the event that \(N \) fails for some range \(r \) but \(T \) “works” for \(r \); formally

\[
E_2 = \left\{ \exists r \in \mathcal{R} \mid |r \cap x| \geq \varepsilon n, r \cap N = \emptyset \text{ and } |r \cap T| \geq \frac{\varepsilon m}{2} \right\}.
\]

Intuitively, since \(E[|r \cap T|] = \varepsilon m \), then for the range \(r \) that \(N \) fails for, we have with “good” probability that \(|r \cap T| \geq \varepsilon m / 2 \). Namely, \(\Pr[E_1] \approx \Pr[E_2] \).

Next, let

\[
E'_2 = \left\{ \exists r \in \mathcal{R} \mid r \cap N = \emptyset \text{ and } |r \cap T| \geq \frac{\varepsilon m}{2} \right\}.
\]

Clearly, \(E_2 \subseteq E'_2 \) and as such \(\Pr[E_2] \leq \Pr[E'_2] \). Now, fix \(Z = N \cup T \), and observe that \(|Z| = 2m \). Next, fix a range \(r \), and observe that the bad probability of \(E'_2 \) is maximized if \(|r \cap Z| = \varepsilon m / 2 \). Now, the probability that all the elements of \(r \cap Z \) fall only into the second half of the sample is at most \(2^{-\varepsilon m / 2} \) as a careful calculation shows. Now, there are at most \(|Z| \leq \mathcal{O}(2m) \) different ranges that one has to consider. As such, \(\Pr[E_1] \approx \Pr[E_2] \leq \Pr[E'_2] \leq \mathcal{O}(2m)2^{-\varepsilon m / 2} \) and this is smaller than \(\varepsilon \), as a careful calculation shows by just plugging the value of \(m \) into the right-hand side; see (5.3).8

8The notion of magic is used here in the sense of Arthur C. Clarke’s statement that “any sufficiently advanced technology is indistinguishable from magic.”
5.4. Discrepancy

The proof of the ε-sample/net theorem is somewhat complicated. It turns out that one can get a somewhat similar result by attacking the problem from the other direction; namely, let us assume that we would like to take a truly large sample of a finite range space $S = (X, R)$ defined over n elements with m ranges. We would like this sample to be as representative as possible as far as S is concerned. In fact, let us decide that we would like to pick exactly half of the points of X in our sample (assume that $n = |X|$ is even).

To this end, let us color half of the points of X by -1 (i.e., black) and the other half by 1 (i.e., white). If for every range, $r \in R$, the number of black points inside it is equal to the number of white points, then doubling the number of black points inside a range gives us the exact number of points inside the range. Of course, such a perfect coloring is unachievable in almost all situations. To see this, consider the complete graph K_3—clearly, in any coloring (by two colors) of its vertices, there must be an edge with two endpoints having the same color (i.e., the edges are the ranges).

Formally, let $\chi : X \to \{-1, 1\}$ be a coloring. The discrepancy of χ over a range r is the amount of imbalance in the coloring inside χ. Namely,

$$|\chi(r)| = \left| \sum_{p \in r} \chi(p) \right|.$$

The overall discrepancy of χ is $\text{disc}(\chi) = \max_{r \in R} |\chi(r)|$. The discrepancy of a (finite) range space $S = (X, R)$ is the discrepancy of the best possible coloring; namely,

$$\text{disc}(S) = \min_{\chi : X \to \{-1, 1\}} \text{disc}(\chi).$$

The natural question is, of course, how to compute the coloring χ of minimum discrepancy. This seems like a very challenging question, but when you do not know what to do, you might as well do something random. So, let us pick a random coloring χ of X. To this end, let Π be an arbitrary partition of X into pairs (i.e., a perfect matching). For a pair $(p, q) \in \Pi$, we will either color $\chi(p) = -1$ and $\chi(q) = 1$ or the other way around; namely, $\chi(p) = 1$ and $\chi(q) = -1$. We will decide how to color this pair using a single coin flip. Thus, our coloring would be induced by making such a decision for every pair of Π, and let χ be the resulting coloring. We will refer to χ as compatible with the partition Π if, for all $(p, q) \in \Pi$, we have that $\chi((p, q)) = 0$; namely,

$$\forall (p, q) \in \Pi \quad \left(\chi(p) = +1 \text{ and } \chi(q) = -1 \right) \quad \text{or} \quad \left(\chi(p) = -1 \text{ and } \chi(q) = +1 \right).$$

Consider a range r and a coloring χ compatible with Π. If a pair $(p, q) \in \Pi$ falls completely inside r or completely outside r, then it does not contribute anything to the discrepancy of r. Thus, the only pairs that contribute to the discrepancy of r are the ones that cross it. Namely, $(p, q) \cap r \neq \emptyset$ and $(p, q) \cap (X \setminus r) \neq \emptyset$.

As such, let $#_r$ denote the crossing number of r, that is, the number of pairs that cross r. Next, let $X_i \in \{-1, +1\}$ be the indicator variable which is the contribution of the ith crossing pair to the discrepancy of r. For $\Delta_r = \sqrt{2#_r \ln(4m)}$, we have by Chernoff’s...
Intuitively, if Namely, a coloring with discrepancy bounded by Corollary 5.32 yields a for some absolute constant r

Let

$$
\Pr\left[|\chi(r)| \geq \Delta_r \right] = \Pr\left[\chi(r) \geq \Delta_r \right] + \Pr\left[\chi(r) \leq -\Delta_r \right] = 2 \Pr\left[\sum_i X_i \geq \Delta_r \right]
$$

$$
\leq 2 \exp\left(-\frac{\Delta_r^2}{2r} \right) = \frac{1}{2m},
$$

Since there are m ranges in \mathcal{R}, it follows that with good probability (i.e., at least half) for all $r \in \mathcal{R}$ the discrepancy of r is at most Δ_r.

Theorem 5.31. Let $\mathcal{S} = (X, \mathcal{R})$ be a range space defined over $n = |X|$ elements with $m = |\mathcal{R}|$ ranges. Consider any partition Π of the elements of X into pairs. Then, with probability $\geq 1/2$, for any range $r \in \mathcal{R}$, a random coloring $\chi : X \to \{-1,+1\}$ that is compatible with the partition Π has discrepancy at most

$$
|\chi(r)| < \Delta_r = \sqrt{2\#_r \ln(4m)},
$$

where $\#_r$ denotes the number of pairs of Π that cross r. In particular, since $\#_r \leq |r|$, we have $|\chi(r)| \leq \sqrt{2|r| \ln(4m)}$.

Observe that for every range r we have that $\#_r \leq n/2$, since $2\#_r \leq |X|$. As such, we have:

Corollary 5.32. Let $\mathcal{S} = (X, \mathcal{R})$ be a range space defined over n elements with m ranges. Let Π be an arbitrary partition of X into pairs. Then a random coloring which is compatible with Π has $\text{disc}(\chi) < \ln(4m)$, with probability $\geq 1/2$.

One can easily amplify the probability of success of the coloring by increasing the threshold. In particular, for any constant $c \geq 1$, one has that

$$
\forall r \in \mathcal{R} \quad |\chi(r)| \leq \sqrt{2c \#_r \ln(4m)},
$$

with probability $\geq 1 - \frac{2}{(4m)^c}$.

5.4.1. Building ε-sample via discrepancy. Let $\mathcal{S} = (X, \mathcal{R})$ be a range space with shattering dimension δ. Let $P \subseteq X$ be a set of n points, and consider the induced range space $\mathcal{S}_{P \downarrow \mathcal{R}} = (P, \mathcal{R}_{P \downarrow \mathcal{R}})$; see Definition 5.4.35d. Here, by the definition of shattering dimension, we have that $m = |\mathcal{R}_{P \downarrow \mathcal{R}}| = O(n^\delta)$. Without loss of generality, we assume that n is a power of 2. Consider a coloring χ of P with discrepancy bounded by Corollary 5.32. In particular, let Q be the points of P colored by, say, -1. We know that $|Q| = n/2$, and for any range $r \in \mathcal{R}$, we have that

$$
\chi(r) = \left| (P \setminus Q) \cap r \right| - \left| Q \cap r \right| < \sqrt{n \ln(4m)} = \sqrt{n \ln O(n^\delta)} \leq c \sqrt{n \ln(n^\delta)},
$$

for some absolute constant c. Observe that $|(P \setminus Q) \cap r| = |P \cap r| - |Q \cap r|$. In particular, we have that for any range r,

$$
\left| |P \cap r| - |Q \cap r| \right| \leq c \sqrt{n \ln(n^\delta)}.
$$

Dividing both sides by $n = |P| = 2|Q|$, we have that

$$
\left| \frac{|P \cap r|}{|P|} - \frac{|Q \cap r|}{|Q|} \right| \leq \tau(n) \quad \text{for} \quad \tau(n) = c \sqrt{\frac{\delta \ln n}{n}}.
$$

Namely, a coloring with discrepancy bounded by Corollary 5.32 yields a $\tau(n)$-sample. Intuitively, if n is very large, then Q provides a good approximation to P. However, we
want an \(\epsilon \)-sample for a prespecified \(\epsilon > 0 \). Conceptually, \(\epsilon \) is a fixed constant while \(\tau(n) \) is considerably smaller. Namely, \(Q \) is a sample which is too tight for our purposes (and thus too big). As such, we will coarsen (and shrink) \(Q \) till we get the desired \(\epsilon \)-sample by repeated application of Corollary 5.32. Specifically, we can “chain” together several approximations generated by Corollary 5.32. This is sometime referred to as the sketch property of samples. Informally, as testified by the following lemma, a sketch of a sketch is a sketch\(^8\).

Lemma 5.33. Let \(Q \subseteq P \) be a \(p \)-sample for \(P \) (in some underlying range space \(S \)), and let \(R \subseteq Q \) be a \(\rho \)-sample for \(Q \). Then \(R \) is a \((p + \rho) \)-sample for \(P \).

Proof. By definition, we have that, for every \(r \in R \),

\[
\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap Q|}{|Q|} \right| \leq \rho \quad \text{and} \quad \left| \frac{|r \cap Q|}{|Q|} - \frac{|r \cap R|}{|R|} \right| \leq \rho'.
\]

By adding the two inequalities together, we get

\[
\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap R|}{|R|} \right| = \left| \frac{|r \cap P|}{|P|} - \frac{|r \cap Q|}{|Q|} \right| + \left| \frac{|r \cap Q|}{|Q|} - \frac{|r \cap R|}{|R|} \right| \leq \rho + \rho'.
\]

Thus, let \(P_0 = P \) and \(P_1 = Q \). Now, in the \(i \)th iteration, we will compute a coloring \(\chi_{i-1} \) of \(P_{i-1} \) with low discrepancy, as guaranteed by Corollary 5.32, and let \(P_i \) be the points of \(P_{i-1} \) colored white by \(\chi_{i-1} \). Let \(\delta_i = \tau(n_{i-1}) \), where \(n_{i-1} = |P_{i-1}| = n/2^{i-1} \). By Lemma 5.33, we have that \(P_k \) is a \((\sum_{i=1}^{k} \delta_i) \)-sample for \(P \). Since we would like the smallest set in the sequence \(P_1, P_2, \ldots \) that is still an \(\epsilon \)-sample, we would like to find the maximal \(k \), such that \(\sum_{i=1}^{k} \delta_i \leq \epsilon \). Plugging in the value of \(\delta_i \) and \(\tau(\cdot) \), see (5.5), it is sufficient for our purposes that

\[
\sum_{i=1}^{k} \delta_i = \sum_{i=1}^{k} \tau(n_{i-1}) = \sum_{i=1}^{k} \sqrt{\frac{\delta \ln(n/2^{i-1})}{n/2^{i-1}}} \leq c_1 \sqrt{\frac{\delta \ln(n/2^{k-1})}{n/2^{k-1}}} = c_1 \sqrt{\frac{\delta \ln n_{k-1}}{n_{k-1}}} \leq \epsilon,
\]

since the above series behaves like a geometric series, and as such its total sum is proportional to its largest element\(^6\), where \(c_1 \) is a sufficiently large constant. This holds for

\[
c_1 \sqrt{\frac{\delta \ln n_{k-1}}{n_{k-1}}} \leq \epsilon \iff c_1^2 \frac{\delta \ln n_{k-1}}{n_{k-1}} \leq \epsilon^2 \iff \frac{c_1^2 \delta}{\epsilon^2} \leq \frac{n_{k-1}}{\ln n_{k-1}}.
\]

The last inequality holds for \(n_{k-1} \geq 2 \frac{c_1^2 \delta}{\epsilon^2} \ln \frac{c_1^2 \delta}{\epsilon^2} \), by Lemma 5.13(D). In particular, taking the largest \(k \) for which this holds results in a set \(P_k \) of size \(O\left((\delta/\epsilon^2) \ln(\delta/\epsilon)\right) \) which is an \(\epsilon \)-sample for \(P \).

Theorem 5.34 (\(\epsilon \)-sample via discrepancy). For a range space \((X, \mathcal{R}) \) with shattering dimension at most \(\delta \) and \(B \subseteq X \) a finite subset and \(\epsilon > 0 \), there exists a subset \(C \subseteq B \), of cardinality \(O((\delta/\epsilon^2) \ln(\delta/\epsilon)) \), such that \(C \) is an \(\epsilon \)-sample for \(B \).

Note that it is not obvious how to turn Theorem 5.34 into an efficient construction algorithm of such an \(\epsilon \)-sample. Nevertheless, this theorem can be turned into a relatively efficient deterministic algorithm using conditional probabilities. In particular, there is a

\(^8\)Try saying this quickly 100 times.

\(^6\)Formally, one needs to show that the ratio between two consecutive elements in the series is larger than some constant, say 1.1. This is easy but tedious, but the well-motivated reader (of little faith) might want to do this calculation.
deterministic $O(n^{d+1})$ time algorithm for computing an ε-sample for a range space of VC dimension d and with n points in its ground set using the above approach (see the bibliographical notes in Section 5.7 for details). Inherently, however, it is far cry from the simplicity of Theorem 5.26 that just requires us to take a random sample. Interestingly, there are cases where using discrepancy leads to smaller ε-samples; again see bibliographical notes for details.

5.4.1.1. Faster deterministic construction of ε-samples. One can speed up the deterministic construction mentioned above by using a sketch-and-merge approach. To this end, we need the following \textit{merge} property of ε-samples. (The proof of the following lemma is quite easy. Nevertheless, we provide the proof in excruciating detail for the sake of completeness.)

\textbf{Lemma 5.35.} Consider the sets $R \subseteq P$ and $R' \subseteq P'$. Assume that P and P' are disjoint, $|P| = |P'|$, and $|R| = |R'|$. Then, if R is an ε-sample of P and R' is an ε-sample of P', then $R \cup R'$ is an ε-sample of $P \cup P'$.

\textbf{Proof.} We have for any range r

$$\frac{|r \cap (P \cup P')|}{|P \cup P'|} = \frac{|r \cap (R \cup R')|}{|R \cup R'|}$$

$$= \frac{|r \cap P|}{|P|} + \frac{|r \cap P'|}{|P'|} - \frac{|r \cap R|}{|R|} - \frac{|r \cap R'|}{|R'|}$$

$$= \frac{1}{2} \left(\frac{|r \cap P|}{|P|} - \frac{|r \cap R|}{|R|} \right) + \frac{1}{2} \left(\frac{|r \cap P'|}{|P'|} - \frac{|r \cap R'|}{|R'|} \right)$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Interestingly, by breaking the given ground sets into sets of equal size and building a balanced binary tree over these sets, one can speed up the deterministic algorithm for building ε-samples. The idea is to compute the sample bottom-up, where at every node we merge the samples provided by the children (i.e., using Lemma 5.35), and then we sketch the resulting set using Lemma 5.33. By carefully fine-tuning this construction, one can get an algorithm for computing ε-samples in time which is near linear in n (assuming ε and d are small constants). We delegate the details of this construction to Exercise 5.6.

This algorithmic idea is quite useful and we will refer to it as \textit{sketch-and-merge}.

5.4.2. Building ε-net via discrepancy. We are given range space (X, \mathcal{R}) with shattering dimension d and $\varepsilon > 0$ and the target is to compute an ε-net for this range space.

We need to be slightly more careful if we want to use discrepancy to build ε-nets, and we will use Theorem 5.31 instead of Corollary 5.32 in the analysis.

The construction is as before – we set $P_0 = P$, and P_i is all the points colored $+1$ in the coloring of P_{i-1} by Theorem 5.31. We repeat this till we get a set that is the required net.

To analyze this construction (and decide when it should stop), let r be a range in a given range space (X, \mathcal{R}) with shattering dimension d, and let

$$\gamma_i = |P_i \cap r|$$
5.4. DISCREPANCY

79
denote the size of the range r in the ith set P_i and let $n_i = |P_i|$, for $i \geq 0$. Observer that the number of points in r colored by $+1$ and -1 when coloring P_{i-1} is

$$\alpha_i = |P_i \cap r| = v_i \quad \text{and} \quad \beta_i = |P_{i-1} \cap r| - |P_i \cap r| = v_i - v_i,$$

respectively. As such, setting $m_i = |P_i| = O(n_i)$, we have, by Theorem 5.31, that the discrepancy of r in this coloring of P_{i-1} is

$$|\alpha_i - \beta_i| = |v_i - 2v_{i-1}| \leq 2v_{i-1} \ln 4m_{i-1} \leq c \sqrt{dv_{i-1} \ln n_{i-1}}$$

for some constant c, since the crossing number $\#r$ of a range $r \cap P_{i-1}$ is always bounded by its size. This is equivalent to

$$2^{i-1}v_{i-1} - 2^iv_i \leq c 2^{i-1} \sqrt{dv_{i-1} \ln n_{i-1}}. \tag{5.6}$$

We need the following technical claim that states that the size of v_k behaves as we expect; as long as the set P_k is large enough, the size of v_k is roughly $v_0/2^k$.

Claim 5.36. There is a constant c_4 (independent of d), such that for all k with $v_0/2^k \geq c_4 d \ln n_k$, $(v_0/2^k)/2 \leq v_k \leq 2(v_0/2^k)$.

Proof. The proof is by induction. For $k = 0$ the claim trivially holds. Assume that it holds for $i < k$. Adding up the inequalities of (5.6), for $i = 1, \ldots, k$, we have that

$$|v_0 - 2^kv_k| \leq \sum_{i=1}^k c2^{i-1} \sqrt{dv_{i-1} \ln n_{i-1}} \leq \sum_{i=1}^k c2^{i-1} \sqrt{d v_0/2^{i-1} \ln n_{i-1}} \leq c_3 2^k \sqrt{d v_0/2^k \ln n_k},$$

for some constant c_3 since this summation behaves like an increasing geometric series and the last term dominates the summation. Thus,

$$\frac{v_0}{2^k} - c_3 \sqrt{\frac{d v_0}{2^k} \ln n_k} \leq v_k \leq \frac{v_0}{2^k} + c_3 \sqrt{\frac{d v_0}{2^k} \ln n_k}.$$

By assumption, we have that $\sqrt{\frac{v_0}{c_4 2^k}} \geq \sqrt{d \ln n_k}$. This implies that

$$v_k \leq \frac{v_0}{2^k} + c_3 \sqrt{\frac{v_0}{c_4 2^k}} = \frac{v_0}{2^k} \left(1 + \frac{c_3}{\sqrt{c_4}} \right) \leq 2 \frac{v_0}{2^k},$$

by selecting $c_4 \geq 4c_3^2$. Similarly, we have

$$v_k \geq \frac{v_0}{2^k} \left(1 - \frac{c_3}{\sqrt{v_0/2^k}} \right) \geq \frac{v_0}{2^k} \left(1 - \frac{c_3}{\sqrt{v_0/2^k}} \right) = \frac{v_0}{2^k} \left(1 - \frac{c_3}{\sqrt{c_4}} \right) \geq \frac{v_0}{2^k}/2.$$

So consider a “heavy” range r that contains at least $v_0 \geq en$ points of P. To show that P_k is an ε-net, we need to show that $P_k \cap r \neq \emptyset$. To apply Claim 5.36, we need a k such that $en/2^k \geq c_4 d \ln n_{k-1}$, or equivalently, such that

$$\frac{2n_k}{\ln(2n_k)} \geq \frac{2c_4d}{\varepsilon},$$

which holds for $n_k = \Omega\left(\frac{d}{\varepsilon} \ln d\right)$, by Lemma 5.13(D). But then, by Claim 5.36, we have that

$$v_k = |P_k \cap r| \geq \frac{|P \cap r|}{2 \cdot 2^k} \geq \frac{1}{2} \cdot \frac{en}{2^k} = \frac{e}{2} n_k = \Omega\left(\frac{d \ln d}{\varepsilon}\right) > 0.$$

We conclude that the set P_k, which is of size $\Omega\left(\frac{d}{\varepsilon} \ln \frac{d}{\varepsilon}\right)$, is an ε-net for P.

Theorem 5.37 (ε-net via discrepancy). For any range space \((X, \mathcal{R})\) with shattering dimension at most \(d\), a finite subset \(B \subseteq X\), and \(\varepsilon > 0\), there exists a subset \(C \subseteq B\), of cardinality \(O((d/\varepsilon) \ln(d/\varepsilon))\), such that \(C\) is an \(\varepsilon\)-net for \(B\).

5.5. Proof of the \(\varepsilon\)-net theorem

In this section, we finally prove Theorem 5.28.

Let \((X, \mathcal{R})\) be a range space of VC dimension \(d\), and let \(x\) be a subset of \(X\) of cardinality \(n\). Suppose that \(m\) satisfies (5.3)p71. Let \(N = \langle x_1, \ldots, x_m \rangle\) be the sample obtained by \(m\) independent samples from \(x\) (the elements of \(N\) are not necessarily distinct, and we treat \(N\) as an ordered set). Let \(E_1\) be the probability that \(N\) fails to be an \(\varepsilon\)-net. Namely,

\[E_1 = \{ \exists r \in \mathcal{R} \mid |r \cap x| \geq \varepsilon n \text{ and } r \cap N = \emptyset \}. \]

(Namely, there exists a “heavy” range \(r\) that does not contain any point of \(N\).) To complete the proof, we must show that \(\Pr[E_1] \leq \varphi\). Let \(T = \langle y_1, \ldots, y_m \rangle\) be another random sample generated in a similar fashion to \(N\). Let \(E_2\) be the event that \(N\) fails but \(T\) “works”; formally

\[E_2 = \{ \exists r \in R \mid |r \cap x| \geq \varepsilon n, r \cap N = \emptyset, \text{ and } |r \cap T| \geq \frac{em}{2} \}. \]

Intuitively, since \(E[|r \cap T|] \geq \varepsilon m\), we have that for the range \(r\) that \(N\) fails for, it follows with “good” probability that \(|r \cap T| \geq \varepsilon m/2\). Namely, \(E_1\) and \(E_2\) have more or less the same probability.

Claim 5.38. \(\Pr[E_2] \leq \Pr[E_1] \leq 2 \Pr[E_2]\).

Proof. Clearly, \(E_2 \subseteq E_1\), and thus \(\Pr[E_2] \leq \Pr[E_1]\). As for the other part, note that by the definition of conditional probability, we have

\[\Pr[E_2 \mid E_1] = \Pr[E_2 \cap E_1] / \Pr[E_1] = \Pr[E_2] / \Pr[E_1]. \]

It is thus enough to show that \(\Pr[E_2 \mid E_1] \geq 1/2\).

Assume that \(E_1\) occurs. There is \(r \in R\), such that \(|r \cap x| > \varepsilon n\) and \(r \cap N = \emptyset\). The required probability is at least the probability that for this specific \(r\), we have \(|r \cap T| \geq \frac{em}{2}\).

However, \(X = |r \cap T|\) is a binomial variable with expectation \(E[X] = pm\), and variance \(V[X] = p(1 - p)m \leq pm\), where \(p = |r \cap x| / n \geq \varepsilon\). Thus, by Chebychev’s inequality (Theorem 27.3p333),

\[\Pr[X < \frac{em}{2}] \leq \Pr[X < \frac{pm}{2}] \leq \Pr[|X - pm| > \frac{pm}{2}] \]

\[= \Pr[|X - pm| > \frac{\sqrt{pm}}{2} \sqrt{V[X]}] \leq \Pr[|X - E[X]| > \frac{\sqrt{pm}}{2} \sqrt{V[X]}] \]

\[\leq \left(\frac{2}{\sqrt{pm}} \right)^2 \leq \frac{1}{2}, \]

since \(m \geq 8/\varepsilon \geq 8/p\); see (5.3)p71. Thus, for \(r \in E_1\), we have

\[\frac{\Pr[E_2]}{\Pr[E_1]} \geq \Pr[|r \cap T| \geq \frac{em}{2}] = 1 - \Pr[|r \cap T| < \frac{em}{2}] \geq \frac{1}{2}. \]

Claim 5.38 implies that to bound the probability of \(E_1\), it is enough to bound the probability of \(E_2\). Let

\[E_2' = \{ \exists r \in R \mid r \cap N = \emptyset, |r \cap T| \geq \frac{em}{2} \}. \]
Clearly, $E_2 \subseteq E'_2$. Thus, bounding the probability of E'_2 is enough to prove Theorem 5.28. Note, however, that a shocking thing happened! We no longer have x participating in our event. Namely, we turned bounding an event that depends on a global quantity (i.e., the ground set x) into bounding a quantity that depends only on a local quantity/experiment (involving only N and T). This is the crucial idea in this proof.

Claim 5.39. $\Pr[E_2'] \leq \Pr[E_2] \leq \delta_d(2m)2^{-em/2}$.

Proof. We imagine that we sample the elements of $N \cup T$ together, by picking $Z = (z_1, \ldots, z_{2m})$ independently from x. Next, we randomly decide the m elements of Z that go into N, and the remaining elements go into T. Clearly,

$$\Pr[E_2'] = \sum_{z \in \mathbb{X}^{2m}} \Pr[E_2' \cap (Z = z)] = \sum_{z \in \mathbb{X}^{2m}} \frac{\Pr[E_2' \cap (Z = z)]}{\Pr[Z = z]} \cdot \Pr[Z = z]$$

$$= \sum_{z} \Pr[E_2' | Z = z] \Pr[Z = z] = \mathbb{E}[\Pr[E_2' | Z = z]].$$

Thus, from this point on, we fix the set Z, and we bound $\Pr[E_2' | Z = z]$. Note that $\Pr[E_2']$ is a weighted average of $\Pr[E_2' | Z = z]$, and as such a bound on this quantity would imply the same bound on $\Pr[E_2']$.

It is now enough to consider the ranges in the projection space (Z, \mathcal{R}_Z) (which has VC dimension δ). By Lemma 5.9, we have $|\mathcal{R}_Z| \leq \delta_d(2m)$.

Let us fix any $r \in \mathcal{R}_Z$, and consider the event

$$E_r = \left\{ r \cap N = \emptyset \text{ and } |r \cap T| > \frac{em}{2} \right\}.$$

We claim that $\Pr[E_r] \leq 2^{-em/2}$. Observe that if $k = |r \cap (N \cup T)| \leq em/2$, then the event is empty, and this claim trivially holds. Otherwise, $\Pr[E_r] = \Pr[r \cap N = \emptyset]$. To bound this probability, observe that we have the $2m$ elements of Z, and we can choose any m of them to be N, as long as none of them is one of the k “forbidden” elements of $r \cap (N \cup T)$. The probability of that is $\binom{2m-k}{m}/\binom{2m}{m}$. We thus have

$$\Pr[E_r] \leq \Pr[r \cap N = \emptyset] = \frac{\binom{2m-k}{m}}{\binom{2m}{m}} = \frac{(2m-k)(2m-k-1) \cdots (m-k+1)}{2m(2m-1) \cdots (m+1)} \leq \frac{m(m-1) \cdots (m-k+1)}{2m(2m-1) \cdots (2m-k+1)} \leq 2^{-k} \leq 2^{-em/2}.$$

Thus,

$$\Pr[E_2' | Z] = \Pr[\bigcup_{r \in \mathcal{R}_Z} E_r] \leq \sum_{r \in \mathcal{R}_Z} \Pr[E_r] \leq |\mathcal{R}_Z| 2^{-em/2} \leq \delta_d(2m)2^{-em/2},$$

implying that $\Pr[E_2'] \leq \delta_d(2m)2^{-em/2}$.

Proof of Theorem 5.28. By Claim 5.38 and Claim 5.39, we have that $\Pr[E_2] \leq 2\delta_d(2m)2^{-em/2}$. It thus remains to verify that if m satisfies (5.3), then $2\delta_d(2m)2^{-em/2} \leq \varphi$.

Indeed, we know that $2m \geq 80$ (by (5.3)_p_{11}) and by Lemma 5.10, $\delta_d(2m) \leq 2(2em/\delta)^{\delta}$, for $\delta \geq 1$. Thus, it is sufficient to show that the inequality $4(2em/\delta)^{\delta}2^{-em/2} \leq \varphi$ holds. By
rearranging and taking lg of both sides, we have that this is equivalent to
\[2^{\frac{em}{2}} \geq \frac{4}{\phi} \left(\frac{2em}{\delta} \right)^6 \implies \frac{em}{2} \geq \delta \lg \frac{2em}{\delta} + \lg \frac{4}{\phi}. \]

By our choice of \(m \) (see (5.3)), we have that \(\frac{em}{4} \geq \lg(4/\phi) \). Thus, we need to show that \(\frac{em}{4} \geq \delta \lg \frac{2em}{\delta} \). We verify this inequality for \(m = \frac{8\delta}{e} \lg \frac{16}{e} \) (this would also hold for bigger values, as can be easily verified). Indeed
\[2\delta \lg \frac{16}{e} \geq \delta \lg \left(\frac{16e}{e} \lg \frac{16}{e} \right). \]
This is equivalent to \(\left(\frac{16}{e} \right)^2 \geq \frac{16e}{e} \lg \frac{16}{e} \), which is equivalent to \(\frac{16}{e} \geq \lg \frac{16}{e} \), which is certainly true for \(0 < \varepsilon \leq 1 \).

This completes the proof of the theorem.

\[\blacksquare \]

5.6. A better bound on the growth function

In this section, we prove Lemma 5.1065. Since the proof is straightforward but tedious, the reader can safely skip reading this section.

Lemma 5.40. For any positive integer \(n \), the following hold.

1. \((1 + 1/n)^n \leq e \).
2. \((1 - 1/n)^{n-1} \geq e^{-1} \).
3. \(n! \geq (n/e)^n \).
4. For any \(k \leq n \), we have \(\binom{n^k}{k} \leq \binom{n}{k} \leq \left(ne \right)^{k} \).

Proof. (i) Indeed, \(1 + 1/n \leq \exp(1/n) \), since \(1 + x \leq e^x \), for \(x \geq 0 \). As such \((1 + 1/n)^n \leq \exp(n(1/n)) = e \).

(ii) Rewriting the inequality, we have that we need to prove \(\left(\frac{n^k}{n-1} \right)^{n-1} \geq e^{-1} \). This is equivalent to proving \(e \geq \left(\frac{n}{n-1} \right)^{n-1} \), which is our friend from (i).

(iii) Indeed,
\[\frac{n^k}{n!} \leq \sum_{i=0}^{\infty} \frac{n^i}{i!} = e^n, \]
by the Taylor expansion of \(e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!} \). This implies that \((n/e)^n \leq n! \), as required.

(iv) Indeed, for any \(k \leq n \), we have \(\frac{n^k}{k!} \leq \frac{n^{k-1}}{k-1!} \), as can be easily verified. As such, \(\frac{n^k}{k!} \leq \frac{n^{k-1}}{k-1!} \), for \(1 \leq i \leq k - 1 \). As such,
\[\binom{n^k}{k} \leq \frac{n^k}{k!} = \frac{n^k}{(k^k)} = \left(\frac{ne}{k} \right)^k. \]

As for the other direction, by (iii), we have \(\binom{n^k}{k} \leq \frac{n^k}{k!} \leq \frac{n^k}{(k^k)} = \left(\frac{ne}{k} \right)^k. \)

Lemma 5.10 restated. For \(n \geq 2\delta \) and \(\delta \geq 1 \), we have \(\binom{n^\delta}{\delta} \leq G_\delta(n) \leq 2 \left(\frac{ne}{\delta} \right)^\delta \), where
\[G_\delta(n) = \sum_{i=0}^{\delta} \binom{n^\delta}{i}. \]
Proof. Note that by Lemma 5.40(iv), we have \(S_{\delta}(n) = \sum_{i=0}^{\delta} \binom{n}{i} \leq 1 + \sum_{i=1}^{\delta} \binom{ne}{i} \). This series behaves like a geometric series with constant larger than 2, since

\[
\left(\frac{ne}{i} \right)^{-1} = \frac{ne}{i} \left(\frac{i - 1}{i} \right)^{i-1} = \frac{ne}{i} \left(1 - \frac{1}{i} \right)^{i-1} \geq \frac{ne}{i + 1} = n \geq \delta \geq 2,
\]

by Lemma 5.40. As such, this series is bounded by twice the largest element in the series, implying the claim.

5.7. Bibliographical notes

The exposition of the \(\varepsilon \)-net and \(\varepsilon \)-sample theorems is roughly based on Alon and Spencer [AS00] and Komlós et al. [KPW92]. In fact, Komlós et al. proved a somewhat stronger bound; that is, a random sample of size \((\delta/\varepsilon) \ln(1/\varepsilon) \) is an \(\varepsilon \)-net with constant probability. For a proof that shows that in general \(\varepsilon \)-nets cannot be much smaller in the worst case, see [PA95]. The original proof of the \(\varepsilon \)-net theorem is due to Haussler and Welzl [HW87]. The proof of the \(\varepsilon \)-sample theorem is due to Vapnik and Chervonenkis [VC71]. The bound in Theorem 5.26 can be improved to \(O(\varepsilon^{\delta/2} + 1/\varepsilon \log 1/\varepsilon) \) [AB99].

An alternative proof of the \(\varepsilon \)-net theorem proceeds by first computing an \((\varepsilon/4) \)-sample of sufficient size, using the \(\varepsilon \)-sample theorem (Theorem 5.26p71), and then computing and \(\varepsilon/4 \)-net for this sample using a direct sample of the right size. It is easy to verify the resulting set is an \(\varepsilon \)-net. Furthermore, using the “naive” argument (see Section 5.3.2.3) then implies that this holds with the right probability, thus implying the \(\varepsilon \)-net theorem (the resulting constants might be slightly worse). Exercise 5.3 deploys similar ideas.

The beautiful alternative proof of both theorems via the usage of discrepancy is due to Chazelle and Matoušek [CM96]. The discrepancy method is a beautiful topic which is quite deep mathematically, and we have just skimmed the thin layer of melted water on top of the tip of the iceberg. Two nice books on the topic are the books by Chazelle [Cha01] and Matoušek [Mat99]. The book by Chazelle [Cha01] is currently available online for free from Chazelle’s webpage.

We will revisit discrepancy since in some geometric cases it yields better results than the \(\varepsilon \)-sample theorem. In particular, the random coloring of Theorem 5.31 can be derandomized using conditional probabilities. One can then use it to get an \(\varepsilon \)-sample/net by applying it repeatedly. A faster algorithm results from a careful implementation of the sketch-and-merge approach. The disappointing feature of all the deterministic constructions of \(\varepsilon \)-samples/nets is that their running time is exponential in the dimension \(\delta \), since the number of ranges is usually exponential in \(\delta \).

A similar result to the one derived by Haussler and Welzl [HW87], using a more geometric approach, was done independently by Clarkson at the same time [Cla87], exposing the fact that VC dimension is not necessary if we are interested only in geometric applications. This was later refined by Clarkson [Cla88], leading to a general technique that, in geometric settings, yields stronger results than the \(\varepsilon \)-net theorem. This technique has numerous applications in discrete and computational geometry and leads to several “proofs from the book” in discrete geometry.

Exercise 5.5 is from Anthony and Bartlett [AB99].

\(^7\)The iceberg is melting because of global warming; so sorry, climate change.
5.7.1. Variants and extensions. A natural application of the \(\varepsilon \)-sample theorem is to use it to estimate the weights of ranges. In particular, given a finite range space \((X, \mathcal{R})\), we would like to build a data-structure such that we can decide quickly, given a query range \(r \), what the number of points of \(X \) inside \(r \) is. We could always use a sample of size (roughly) \(O(\varepsilon^{-2}) \) to get an estimate of the weight of a range, using the \(\varepsilon \)-sample theorem. The error of the estimate of the size \(|r \cap X|\) is \(\leq \varepsilon n \), where \(n = |X| \); namely, the error is additive. The natural question is whether one can get a multiplicative estimate \(\rho \), such that \(|r \cap X| \leq \rho \leq (1 + \varepsilon)|r \cap X|\), where \(|r \cap X|\).

In particular, a subset \(A \subset X \) is a (relative) \((\varepsilon, p)\)-sample if for each \(r \in \mathcal{R} \) of weight \(\geq pn \),
\[
\left| \frac{|r \cap A|}{|A|} - \frac{|r \cap X|}{|X|} \right| \leq \varepsilon \frac{|r \cap X|}{|X|}.
\]

Of course, one can simply generate an \(\varepsilon p \)-sample of size (roughly) \(O(1/(\varepsilon p)^2) \) by the \(\varepsilon \)-sample theorem. This is not very interesting when \(p = 1/\sqrt{n} \). Interestingly, the dependency on \(p \) can be improved.

Theorem 5.41 ([LLS01]). Let \((X, \mathcal{R})\) be a range space with shattering dimension \(d \), where \(|X| = n \), and let \(0 < \varepsilon < 1 \) and \(0 < p < 1 \) be given parameters. Then, consider a random sample \(A \subset X \) of size \(\frac{c}{\varepsilon^2 p} \left(d \log \frac{1}{p} + \log \frac{1}{\varphi} \right) \), where \(c \) is a constant. Then, it holds that for each range \(r \in \mathcal{R} \) of at least \(pn \) points, we have
\[
\left| \frac{|r \cap A|}{|A|} - \frac{|r \cap X|}{|X|} \right| \leq \varepsilon \frac{|r \cap X|}{|X|}.
\]

In other words, \(A \) is a \((p, \varepsilon)\)-sample for \((X, \mathcal{R})\). The probability of success is \(\geq 1 - \varphi \).

A similar result is achievable by using discrepancy; see Exercise 5.7.

5.8. Exercises

Exercise 5.1 (Compute clustering radius). Let \(C \) and \(P \) be two given sets of points in the plane, such that \(k = |C| \) and \(n = |P| \). Let \(r = \max_{p \in P} \min_{c \in C} \|c - p\| \) be the covering radius of \(P \) by \(C \) (i.e., if we place a disk of radius \(r \) centered at each point of \(C \), all those disks cover the points of \(P \)).

A. Give an \(O(n + k \log n) \) expected time algorithm that outputs a number \(\alpha \), such that \(r \leq \alpha \leq 10r \).

B. For \(\varepsilon > 0 \) a prescribed parameter, give an \(O(n + ke^{-2} \log n) \) expected time algorithm that outputs a number \(\alpha \), such that \(r \leq \alpha \leq (1 + \varepsilon)r \).

Exercise 5.2 (Some calculus required). Prove Lemma 5.13.

Exercise 5.3 (A direct proof of the \(\varepsilon \)-sample theorem). For the case that the given range space is finite, one can prove the \(\varepsilon \)-sample theorem (Theorem 5.26) directly. So, we are given a range space \(S = (x, \mathcal{R}) \) with VC dimension \(\delta \), where \(x \) is a finite set.

A. Show that there exists an \(\varepsilon \)-sample of \(S \) of size \(O(\delta e^{-2} \log \frac{\log 9}{\epsilon}) \) by extracting an \(\varepsilon/3 \)-sample from an \(\varepsilon/9 \)-sample of the original space (i.e., apply Lemma 5.30 twice and use Lemma 5.33).

B. Show that for any \(k \), there exists an \(\varepsilon \)-sample of \(S \) of size \(O(\delta e^{-2} \log \frac{\log 9k}{\epsilon}) \).

C. Show that there exists an \(\varepsilon \)-sample of \(S \) of size \(O(\delta e^{-2} \log \frac{1}{\epsilon}) \).
EXERCISE 5.4 (Sauer’s lemma is tight). Show that Sauer’s lemma (Lemma 5.9) is tight. Specifically, provide a finite range space that has the number of ranges as claimed by Lemma 5.9.

EXERCISE 5.5 (Flip and flop). (A) Let \(b_1, \ldots, b_{2m} \) be \(m \) binary bits. Let \(\Psi \) be the set of all permutations of \(1, \ldots, 2m \), such that for any \(\sigma \in \Psi \), we have \(\sigma(i) = i \) or \(\sigma(i) = m+i \), for \(1 \leq i \leq m \), and similarly, \(\sigma(m+i) = i \) or \(\sigma(m+i) = m+i \). Namely, \(\sigma \in \Psi \) either leaves the pair \(i, i+m \) in their positions or it exchanges them, for \(1 \leq i \leq m \). As such \(|\Psi| = 2^m \).

Prove that for a random \(\sigma \in \Psi \), we have
\[
\Pr \left[\left| \frac{\sum_{i=1}^{m} b_{\sigma(i)}}{m} - \frac{\sum_{i=1}^{m} b_{\sigma(i+m)}}{m} \right| \geq \varepsilon \right] \leq 2e^{-\varepsilon^2 m/2}.
\]

(B) Let \(\Psi' \) be the set of all permutations of \(1, \ldots, 2m \). Prove that for a random \(\sigma \in \Psi' \), we have
\[
\Pr \left[\left| \frac{\sum_{i=1}^{m} b_{\sigma(i)}}{m} - \frac{\sum_{i=1}^{m} b_{\sigma(i+m)}}{m} \right| \geq \varepsilon \right] \leq 2e^{-C\varepsilon^2 m/2},
\]
where \(C \) is an appropriate constant. [Hint: Use (A), but be careful.]

EXERCISE 5.6 (Sketch and merge). Assume that you are given a deterministic algorithm that can compute the discrepancy of Theorem 5.31 in \(O(nm) \) time, where \(n \) is the size of the ground set and \(m \) is the number of induced ranges. We are assuming that the VC dimension \(\delta \) of the given range space is small and that the algorithm input is only the ground set \(X \) (i.e., the algorithm can figure out on its own what the relevant ranges are).

(A) For a prespecified \(\varepsilon > 0 \), using the ideas described in Section 5.4.1.1, show how to compute a small \(\varepsilon \)-sample of \(X \) quickly. The running time of your algorithm should be (roughly) \(O(n/\varepsilon^{O(\delta)} \text{polylog}) \). What is the exact bound on the running time of your algorithm?

(B) One can slightly improve the running of the above algorithm by more aggressively sketching the sets used. That is, one can add additional sketch layers in the tree. Show how by using such an approach one can improve the running time of the above algorithm by a logarithmic factor.

EXERCISE 5.7 (Building relative approximations). Prove the following theorem using discrepancy.

Theorem 5.42. Let \((X, R)\) be a range space with shattering dimension \(\delta \), where \(|X| = n \), and let \(0 < \varepsilon < 1 \) and \(0 < p < 1 \) be given parameters. Then one can construct a set \(N \subseteq X \) of size \(O\left(\frac{\delta}{\varepsilon^2} \ln \frac{\delta}{\varepsilon^2} \right) \), such that, for each range \(r \in R \) of at least \(pn \) points, we have
\[
\frac{|r \cap N|}{|N|} - \frac{|r \cap X|}{|X|} \leq \varepsilon - \frac{|r \cap X|}{|X|}.
\]

In other words, \(N \) is a relative \((p, \varepsilon)\)-approximation for \((X, R)\).