21.1

Surfaces with
Arbitrary Topology

of shapes of arbitrary complexity and/or topology. We €an present only a brief
selection of methods; moje literatyre on the topic; [177], [596], [595], [594],
(289], [290], [293], 321 L [431], [627], 39g) [S61]. The firge in-depth study of
fecursive subdivisjop Processes goes hack to U. Reif [§ 03]. The basic concepts of
surface topology are nicely explained jp [323].

Recursive Subdivision Curves

1!
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Figure 21.1 Subdivision curves: one step of cubic B-spline curve subdivision.

of every knot, new control points di1 are generated from the existing ones by
setting

y 1 3 1
dy) = gdimit gdi+ odiny

1 1 1
i) = di+5di+1

2+1 E

See Figure 21.1 for an illustration. We may analyze the resulting curve b
exploiting the fact that we are dealing with a cubic B-spline curve. Howeve
that analysis may also be carried out without this knowledge. Let us investig

the limit of the sequence d, di), df,e), .. .. We may write the recursion in mat
form as

(¢))
d2k—1

M
de

O]
d2k+ 1

and abbreviate it as

The matrix A has eigenvalues 1, %, % and may be diagonalized’ as
A=EAE™,

where

1 The process of diagonalization is a standard linear algebra procedure.
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The matrix E containg A’s eigenvectors, and the diagonal matrix A contains A’
eigenvalues,
For the next iteration, we have

D@ ADD — AZD(D.
Using our diagonalization for A, we get
A2 = EAET'E~IAF = EA2p-1
and further
AT =EA'E1,
Taking the limit » — oo yields

A% = EA®E-1

this becomes

implying that all three points d_;, d,, diy1 converge to the same point (d,_; +
4d; + dy1)/6. This result i 1o surprise since we know we are dealing with
-spline curves. It does illustrate, however, a general principle that is ubiquitous
in all subdivision theory, namely, that convergence analysis js normally carried
out via an eigenvalue analysis,
Subdivision may also be used to generate interpolating curves, The basic four-
point principle was developed by Dyn, Levin, and Gregory [178], [176]. Let a




Chapter 21 Surfaces with Arbitrary Topology

(1) P(zl‘) 1 ()
+
P3; ‘ Pl

Figure 21.2 Subdivision curves: one step of the four-point scheme.

sequence of points p; be given; then successively construct new sequences by
setting
(@)
p2i =Pi
(21.4)

1 1 ‘
P(zi)+1 = “1'6‘[—Pi—1 + 9p; + 9pis1 — Pin2l

For an illustration, see Figure 21.2. The point pg}i)+1 is the result of applying cubi
Lagrange interpolation at uniform knots, see [S19].

At each level of the subdivision process, the points of the previous step
retained; this causes the scheme to interpolate to the initial set of points. T
limit curve is C1, but fails to be C2.

Doo—Sabin Surfaces

The fundamental idea of this kind of surface goes back to Chaikin’s algori
see Section 8.4. There, we started with a polygon, iteratively applied a refin
procedure to it, and observed that in the limit we ended up with a smooth
M. Sabin and D. Doo asked if this principle could be carried over to st
start with a polyhedron, iteratively apply a refinement procedure to it, an
a smooth surface would result.

They then came up with the following algorithm, illustrated in Fi
and documented in [174]: input: an arbitrary closed polyhedron with
p;. These vertices form (straight) edges and (not necessarily planat) f
defining the topology of the polyhedron. The refinement step now beco

1. For each face, compute new vertices VE
face as follows:

D by averaging the vertic

n
D _ .
Vi = Z %ij¥j
=1
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ses by
Figure 21.3 Tpe Doo-Sabin algorithm: a new polyhedron is constructed by a refinement procedure,
where the @;; are given by
21.4) 5
( % = =
342 cos \2775;'—/ ) (21 6)
G =
3 cubic 2. Construct 3 new polyhedron from these New vertices, 5
)
‘ep are Step 2 needs some more explanation, The new polyhedron wij] have faces that |
s. The

are constructed according to three different rules:

|
2a. The F-faces are found by cyclically connecting the VZ.(D of each origina| face. |
2b. The E-faces are found '

each face centrojd with the edge endpoints, Thege fo
orithm;

|
nement Sy
s el 2c. The V-faces are formed by c.on51dermg all E-faces around an origing] vertex ’(
\rface They surround 4 face that is “centered” on that vertex, |
1d see if : ; ; . |
As we keep repeating the algorithm, it produces mostly four-sided faces. The |
1.3 only non—four-sided faces are V-faces generated by those injtia] vertices whose “
%;zrti el valency? is not four, or F-faces whose initial faceg are not four sided. These faces |
es. thushl give rise to [imit points whose valency is not four, so-called extraordinary vertices.
nést | In fact, it is not hard to see that after the firgt step the valency of every new
vertex is four. In this manner, large regions of the new polyhedra are covered with
v, of the nets that have a tengor product structyre, Doo

—Sabin surfaces are thus “mostly”

(213) -
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Figure 21.4 The Doo-Sabin algorithmsan example. Left, the original mesh (a cube). Middle, after one
iteration. Right, after three iterations. Figure courtesy A. Nasri.

Let us briefly analyze the structure of the Doo-Sabin algorithm. New face
points Vfl) are created from previous ones in a linear fashion that lends itself to
a matrix formulation. Let us consider a five-sided face such as the center face in

Figure 21.3. We obtain

_ vf) -

a1 o1 03 Oi4 04§ Vi

We may write this as

v = AV,

which becomes

VO = ALY

after » applications of the algorithm. In the general case, we have the

structure but have to replace As by a matrix A,, for faces with 7 edges.
As 7 increases, the behavior of the subdivision process depends crucial

the eigenvalues of A, since we may write A}, as

_ -1
AT = E,ALE;




following the approach of Section 21.1. Since all rows of A, sum to unity, one
eigenvalue s At=1. The remaining ones are z]| real since A ig Ssymmetric and
are all between 0 and 1 since each V® jg contained in the convex fy]] of Vk=1),
An exact analysis of this process is fairly involyed and is omitted here, It reveals,

Catmull-Clark Subdivision

The same issue of Computer-Aided Design that included the Doo-Sabin al-
gorithm also contained a4 competing method, invented by E. Catmull and J.
Clark; see [103]. Whereas Doo-Sabin surfaceg area generalization of biquadratic
B-splines to arbitrary topology, Catmull-Clark surfaces generalize bicubic
B-spline surfaces to arbitrary topology.

We start with 2 polygonal mesh A0 consisting of vertices v/g. We iteratively
refine the mesh, resulting in finer and finer meshes M, consisting '
Each refinement Step can be described by explaining what happe

the points adjacent to a vertex v

1. Form face points f;“: for each face i the mesh, find the centroid of jts
vertices.

2. Form edge points e;Hz for each edge in the mesh, average the edge’s
endpoints and the twe face points on either side of the edge.

3. Form a new vertex point yi+1, assuming there are 5 faces around vl it is
computed as follows:
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Figure 21.5 ‘Thle Catmull-Clark algorithm: the original control net (black) and one level of subdivision
(gray).

Figure 21.6 The Catmull-Clark algorithm: an example. Left, the original mesh (a cube). Middle, afte k
one iteration. Right, after three iterations. Figure courtesy A. Nasri.

A G A ‘
T=yiy = Do —vh+ = Z(f;“ —v.
e et

4. Form new faces. Each new face consists of a loop of the form

i+1 i+1 i+1 i+1 141
A LR s
where the two £+’ refer to the same face point.

Note that all faces after the first level will be four sided. The basic princi|
shown in Figure 21.5. Figure 21.6 gives an example.

For the example of a vertex with valency 7 = 4, the relationship betwe
and old vertices may be expressed as a matrix equation:




m

fter

le is

new
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Vf‘+1 Vi
o tiiiag e
e 661011001e§
it 6161011006,-
1| 1|60 1 6 1 0 1 1 +
€ =E610160011€4
vitl 44400490 0 9 vi
'Vi+1 404400400Vi
- 400449090 4 2
vt 44004009 4]V
vfﬁl v

For valencies other than four, similar matrix equations hold; see [308]. Those
vertices converge to extraordinary vertices,
We may abbreviate (21.3) as

Vit = avi. (21.9)

An equivalent form of (21.9) is given by

It follows that A has the dominant eigenvalue 1 ; the magnitudes of 4] other
(possibly complex) eigenvalues are bounded by 1.

A careful eigenvalue analysis (see Ball and Storry [18]) can now be used to
show that

vl 4 el 4y gl
v“:%, (21.11)
n(n+ 5)
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21.4 Midpoint Subdivision

This algorithm is simpler than either Catmull-Clark or Doo-Sabin and goes back
to Peters and Reif [469] who call it “the simplest scheme.”

1. Form edge points e: for each edge in the mesh, compute its midpoint.

2. Form faces of new level. There are two types: faces inscribed to the existing
“ones and faces whose vertices are the edge midpoints around old vertices.
See Figure 21.7 for an illustration. In order to discuss convergence of the
scheme, let py,. . ., p,, be the vertices of a face. This face generates vertices

p} as edge midpoints

Pi

;
Pu_1
P,

D b NI i

We write this as

P! = Mmp.

Matrices of the form (21.12) are called circulant.
After k iterations, this becomes

Pt = M*P.
The matrix M may be decomposed into a product

M =EAE™,

Figure 21.7 Midpoint subdivision: the original control net (black) and one level of subdivisio
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A triangle-based subdivision scheme was discussed by C. Loop [397]. Its input
Is a triangular mesh as discussed in Section 21.9. It thep successively refines this
mesh, resulting in a smooth limit surface.

Loop subdivision proceeds as follows,

1. Form edge points e;+1: assuming that vi and Vé are the endpoints of an

edge in the mesh and that Vé and vf1 are the remaining vertices of the two
triangles sharing the edge, set

e;+1=§(v;+v§)+§1(v§+vf,). (21.13)

This process is easily visualized using a mask, shown in Figure 21.8. The
coefficients shown are then multiplied by a factor of 1/8 in order to produce
barycentric combinations,

2. For each vertex v’ in the mesh, form a new vertex point yit1, Assuming v

has 7 neighbors Vi, VE it is computed as follows:
g 1 n p

1

Figure 21,8 Loop subdivision: the edge point mask.
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Figure 21.9 Loop subdivision: the original control net (black) and one level of subdivision (gray).

n
Vit = (1 —na)v +a ) v, (21.14)
j=1

forn>3andot:%ifn=3.

3. Form new triangles. Figure 21.9 illustrates.

Now consider the mesh that is obtained after some number k of iterations
ertex will converge to a point v*° on the limi
ysis as mentioned, we can show (see [584]) tha

Select any vertex v of it. This v
surface. Using an eigenvalue anal

this limit point is given by : 7
f
&\V .
n

§

3+ 8a(n— DV 8o ,

X = + i 21
3+ Snar 3+8na2v/ =

j=1

where the v; are the neighbors of v in the mesh obtained after k iterations
the special case k=0, (21.15) gives the limit points corresponding to the ot
mesh vertices. :

If all vertices in the mesh have valency six, then the resulting limit 8
will be a collection of quartic Bezier triangles that form a C? surface 0
equilateral triangulation of a simply connected region of a (domain) pla
note that closed surfaces cannot be formed using only points with valen
Vertices with different valencies converge to extraordinary vertices, W

surface is only GL.
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V3 subdivision; black, original mesh, 8ray: new mesh after one iteration,

V3 Subdivision

This scheme was developed by L. Kobbe]t [362] and was also considered by Sabin
[517]. We start with a triangular megh and then subdivide each triangle into
three triangles by splitting it at it centroid. Next, ] edges of the Initial mesh are
flipped—instead of joining the initia] vertices, they now join adjacent centroids,
Finally, each Initial vertex p (having valency #) g replaced by 4 barycentric

combination of jts neighbors:

An example of one step of the /3 scheme is shown in Figure 21,10,
Each subdivision Step rotates the directiona] structure of the triangular mesh;
after two applications, the mitial orientation is
triangle has thep given rise to pj
of the eigenstructure of the /3
surface is G2 except at extraordj
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Figure 21.11

Interpolating Doo-Sabin surfaces: given points p;: solid. Intermediate points q; z: hollow.
Desired vertices v;: vertices of black mesh.

We can also use recursive subdivision surfaces for interpolation. The idea goes
back to Nasri [440] and to M. Lounsbery, S. Mann, and T. DeRose [402]. The
latter reference constructs interpolating Catmull-Clark surfaces, whereas Nasri
constructs interpolating Doo-Sabin surfaces—we will start with them.

Given is a polyhedron with vertices p;, and we wish to find another polyhedron
with vertices v; such that the resulting Doo-Sabin surfaces pass through the p;.
Each of the (unknown) v; will generate a V-face with vertices q; 5k =1,...,7,
where #; is the valency of v;. We know that the centroids of these V-faces are on
the surface, and we simply require them to be the given data points:

1
pi=—@1+ .+ i)
n;

Note that the given points are not on the faces of the desired polyhedron; but
rather on the V-faces obtained from it after one level of subdivision; see Figur
21.11 for an illustration.

Since the relationship between the q;j; and the unknowns v; is known, w
have a set of linear equations relating the given p; to the unknown v;. For clos
polyhedra, the number of equations equals the number of unknowns, leading
a sparse linear system. j

This method lends itself to a hybrid usage: some control mesh vertices v; m
be given as with freeform design, whereas others are replaced by interpola
points p;. Each of the interpolation points gives rise to one linear equation,
the resulting system is easily solved. See Figure 21.12 for an example.

For open polyhedra, the situation is more complicated; it is dealt with by N
[439], [440], [441].

Catmull-Clark subdivision surfaces may also be employed to generate su
passing through a prescribed set of data points. We can use (21.11) to gen
control mesh that interpolates to a set of known data points v*°. All (21.11
a linear system for the unknowns vl. This is a sparse system and thus
solved even if there are many (> 1000) data points.
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Figure 21.12

f the initia] control net are marked as
- (Courtesy A, Nasri.)

-1 -1
2

Figure 21,13 Butterfly subdivision: the edge point mask.

II these equations form g

multiplied by a factor of 1/16.
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Just as in the four-point curve interpolation scheme of Section 21.1, interpo-
lation is assured since vertex points are kept.

71.8 Surface Splines

As we iterate through the Doo-Sabin algorithm, more and more of the surface is
covered by biquadratic patches, just leaving the extraordinary regions. After two
iterations, these are already nicely separated—they correspond to s-sided regions.
J. Peters had the idea of deviating from the Doo-Sabin procedure after two steps
and to fill in these s-sided regions with a collection of bicubics, such that the
overall surface is G1; see [467] and also [466] or [463].3 It is not equivalent to
the Doo-Sabin surface, but it has the advantage of being a collection of standard
patches without singularities.

The situation after two (of more) steps of the Doo-Sabin algorithm is shown
in Figure 21.14. We have so far created the points marked by squares. The solid
squares mark control points surrounding an s-sided region, whereas the open
ones are control points of the network of biquadratic patches. We are going to
cover the s-sided region by a collection of s bicubic patches, all having a centet
point ¢ in common. This center point is simply the average of all solid control
points surrounding the s—sided region, only partially shown in Figure 21.14.

Next, we have to degree elevate each quadratic boundary curve of the s-sided
region and to subdivide it at its (parametric) midpoint. This gives two boundary
curves of each bicubic patch. ;

The “outer” two layers of each bicubic patch lie on bilinear patches as shown ‘
in Figure 21.14. Their computation4 is illustrated for the four top left points in

that figure:
RN
by bu d

The remaining eight Bézier points along the outer patch boundary are fou

analogously.
The three remaining Bézier points bys, by3, b3y ar€ determined as follows:

‘ , 4 S ) i+ (i+i+D
o = & S ()
s 3 2

N

3 For a similar treatment of Catmull-Clark meshes, see [468].

4 We give a slightly simplified version of Peters’s original development [467] hete.
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i7 of one bicubjc patch.,

Figure 21,15 Surface splines: an example, ( Courtesy J. Peters.)

patch collection
b3y, by3) are equal. The points
¢=cos(2r/s) and &=(1-¢b

und b, Setting
gg + cbg;, they are

if n is odd,

if 7 is even,

bd _ | =2 (=1y Civj
2 %2 Zj:l (s =) (- l)lei+j

A surface spline is shown in Figure 21.15.
Surface splines mg

¥ also be used to Interpolate to 4 mesh of data points in the
Same way as Doo-Sabin surfaces did: after two steps of the Doo-Sabin algorithm,
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move those control points that surround given data points such that their average
equals that data point. Then proceed as before, and interpolation is ensured.

Triangular Meshes

We encountered triangular meshes in Section 3.7—there, we were dealing with
2D meshes. Keeping the same data structure, we may generalize 2D triangulations
to 3D triangle meshes: these are surfaces consisting of a collection of triangles;
see Figure 21.16. The vertices p; of the triangles are now 3D points. Triangle
meshes are piecewise linear and thus are not smooth—although this defect
may be overcome by using very many triangles. One example is provided by
the “Digital Michelangelo” project, carried out by M. Levoy. The aim of the
project is to digitally record sculptures by Renaissance artist Michelangelo. Each
sculpture was digitized using a laser digitizer; the resulting “point cloud” was
then triangulated. For some sculptures, around two billion triangles were needed;
see [386].

Boundary edges are edges in the mesh that belong to one triangle only; all
other edges, being part of two triangles, are called interior edges. A vertex is
called boundary vertex if it is on a boundary edge; otherwise, it is called an
interior vertex. The solid vertex in Figure 21.17 is an interior vertex.

A significant difference between 2D and 3D triangulations is their topology.
Every 2D triangulation must have boundary vertices, but 3D triangulations do
not have to have any. Consider the example of a tetrahedron, the simplest 3
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Figure 21.16 Triangular meshes: an example of a triangulated turbine. (Courtesy 3D Co
Technologies.) \
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triangle mesh. It has four vertices and four triangles, all of them in
Triangular meshes are called clog

vertices by £,
the genus G:

G:il—(v~e+f—2).

This is known as the Euler-Poin

polygonal faces, not just triangular ones, For example, a cube consisting of six
square faces, twelve edges, and eight vertices, has genus 0, If we split each square
into two triangles, we have (f,e,v) = (12,18, 8), again resulting in genus zero.
For more details, see Hoffmann [327].

Decimation

 tri i dense for an efficient representation of an
object. What is called for then is 4 reduction in size, also known as decimation.S
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termine if it can pe removed. If so, the point (and so
removed and the resulting gap will be retriangulated.
1o more data can he removed,

An important ingredient in many mesh algorithms jg a test for determinin
a mesh is flat in the vicinity of a vertex p
concept of the stz P} of a vertex P;: this is the set of

metimes its neighbors) are
The process continues untif

pute the angles between
all pairs of neighboring triangles in p*. If the largest of these angles is less than
i > then we [abel P as flat. The tolerance Is naturally application

Figu
dependent, but 0.1 to 1 degrees should work well. This flatness test i independent

has to be scaled as well.

We now discuss 4 decimation method thatis due to M, Lounsbery [400],

It checks if an edge in a triangulation can be safely removed. [f so, the e
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Figure 21.19 Decimation: the dat.
Compression Techn

Figure 21,20

asetof Figure 21.1¢ (left

ologies.)

Vertex removal: a vertex is labeled removable
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), and after decimation (right). ( Courtesy 3D

(left), and its star Is retriangulated (right).

e a hierarchy of

“knows” if it was generated by an

—Tecreating an edge

from a vertex—is known
cimated mesh ma

y be refined by successively
essive refinement lends itself
tiresolution methods: [1 84],
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21.11 Problems

1 Consider the following subdivision method: starting with a closed polygo-
nal mesh, recursively subdivide by alternating between the Doo-Sabin and
Catmull—Clark schemes. What can you say about the number of extraor-
dinary vertices?

9 The Euler=Poincaré formula (21.16) always produces a genus that is an
integer. Why?

% Take a cube with square faces and place three square holes through it, each
hole connecting opposite faces. What is the genus of the resulting object?

4 Sketch the effect of two levels of the +/3 scheme.

x5 The Doo-Sabin recursion generates a sequence of F-faces for every face; in
the limit converging to the centroid of the considered face. Show that the
limiting F-faces are planar.

* 6 Fach of the triangles in p* forms an angle at p. Call the sum of all these
angles 5. 1 Zp = 360, then all triangles are in one plane. Thus the quantity
360 — | Xp| measures the nonplanarity of p*—yet it is not a good flatness
indicator. Why?

P1 Write a program to find an interpolating Doo-Sabin surface to the eight
vertices of a cube.




