
15-451/651: Design & Analysis of Algorithms April 17, 2018
Lecture #23: Graph Compression last changed: April 28, 2018

1 Why Graph Compression?

When we deal with graphs, often times we’re interested determining some properties of the graph,
e.g., the diameter. For an undirected unweighted graph G = (V,U) the diameter DG is defined as

DG := max
u,v∈V

dG(u, v)

Here dG(u, v) denotes the length of the shortest path between u and v according to the graph G.
For example, if G a path on n vertices, the diameter is n− 1: (this is the distance from the ‘first’
and ‘last’ vertex in this path. For a complete graph Kn on n vertices, the diameter is 1, since the
shortest path between any two vertices is just the edge that connects them. For bigger graphs that
aren’t as nice as paths or cliques, calculating the diameter can involve computing the shortest path
between all pairs of vertices. Luckily, we know all-pairs shortest path (APSP) algorithms that take
around O(n · |E|) ≤ O(n3) time (remember Johnson’s algorithm), which is not too bad.

But what if we don’t have that much time? E.g., if we’re dealing with a really edge-y graph (like
a clique, but we don’t know its a clique - because checking if its a clique takes time too). Suppose
we are happy with an approximation to the diameter? Maybe then I shouldn’t need to look at all
the edges in the graph to get some idea of what the diameter of the graph is? Maybe I can find
a way to “compress” my graph G into a smaller graph H that is a good approximation of G w.r.t
the shortest paths.

Our new subgraph H will have vertex set V (we don’t want to kick out any vertices - because if v
is not in H, there’s no way of telling what the shortest path to v is in G) and a much smaller edge
set E′ (which is some subset of E). This graph will much sparser than G itself. And if we want
dG(u, v), we’ll respond with dH(u, v), which should take much less time to compute if |E′| � |E|
Doing this cannot guarantee that dH(u, v) = dG(u, v). E.g., if G is a clique, removing a single
edge that connects u to v to create H will cause dH(u, v) to jump from 1 to 2. This motivates the
following question: Can we find sparse subgraphs H that approximate dG(u, v) for all u, v? And
how fast can we do this?

2 Spanners

A spanner of an undirected unweighted graph G = (V,E) is a subgraph H = (V,E′) that spans
the graph (i.e., vertices connected in G are also connected in H—otherwise calculating shortest
paths would be impossible).

Definition 1 A (k, b)-spanner of G is a subgraph H such that for all pairs of vertices u, v:

dG(u, v) ≤ dH(u, v) ≤ k · dG(u, v) + b

When b = 0, this is called a multiplicative spanner. When k = 1, this is an additive spanner.

Note: the first inequality always holds true: removing edges can never shrink the shortest path.
We’re really interested in ensuring the upper bound on dH(u, v), since we don’t want to remove so
many edges that the graph H is barely recognizable as being derived from G.

1

Considering a spanner of a graph and settling for an approximation allows us to reduce the
time/space used in graph algorithms. (We’ve seen this sort of trade-off between time/space and
quality of the answer before, in say streaming algorithms, or in approximation algorithms.) For
instance, if we want the single-source shortest paths in the unweighted graph G but settle for an
approximation, we can use time and space O(|E′|+n) over O(|E|+n) by running BFS on H rather
than G. So if we reduce the number of edges from n2 to say, n1.5, this could be very helpful.

To approximate the diameter of a graph, the spanner bounds will still hold (please prove this for
yourself): DG ≤ DH ≤ k · DG + b. We can compute this approximation using time O(n|E′|) as
opposed to O(n|E|).
Caveat: we should be mindful of the time it takes to compute the spanner H itself. I.e., if we try
to be really careful to ruin as few shortest paths as possible, or use the fewest edges, we may take a
lot of time to construct H. So our algorithm should be fast and simple. While we will not discuss
this further in this lecture, it is something to keep track of, when thinking about spanners.

3 Multiplicative Spanners

We say a spanner H of G is k-mutliplicative if for all pairs of vertices u, v

dG(u, v) ≤ dH(u, v) ≤ k · dG(u, v)

If we want this to hold true, how many edges do I really need to keep? First, let’s make a simple
observation that allows us to focus on just edges of G.

Claim 2 If for every edge (u, v) in G, if the distance between u and v in H is at most k (i.e.,
dH(u, v) ≤ k), then for every pair of vertices u, v ∈ G,

dH(u, v) ≤ k · dG(u, v).

Proof: Fix a shortest path P = {e1, e2, ..., e`} from u to v in G. It has length ` = dG(u, v). Now
for each edge ei = (vi, vi+1) on P there is a path from vi to vi+1 in H of length k. Concatenating
these paths in H together gives a path from u to v of length k ·dG(u, v). Now the shortest u-v path
in H can be no longer. This proves the claim. �

What does this observation tell us? As long as I have a path of at most k edges between u and v
for every edge (u, v) in G, I am a k-multiplicative spanner.

2

3.1 The Algorithm

If we don’t want to add any more edges than necessary, we shouldn’t add an edge if we already
have a path of length at most k between its endpoints. Another way to phrase this is to say that
there will never be a cycle of length ≤ k + 1—if there were, the last added edge on this cycle, the
one that created the cycle, would have had a path between its endpoints of length ≤ k. Creating
bigger cycles (of length at least k + 2) is fine.

This motivates the following greedy algorithm to construct a k−multiplicative spanner:

1. Initialize H = (V,E′) with E′ = ∅.

2. For every edge e ∈ E, if e doesn’t form a cycle of length ≤ k + 1 with other edges in E′, add
e to E′.

We can replace this constraint with the equivalent constraint: “For every edge e ∈ E that
connects i to j, if dH(i, j) > k, add e to E′, else drop it”.

Theorem 3 H is a k-multiplicative spanner.

Proof: By Claim 2 we need to just ensure that for every edge of G, there exists a path in H
of length at most k. Consider some edge e = (u, v) in G. Either it belongs to H, in which case
dH(u, v) = 1. Else it was dropped. By the algorithm description this is because H already contains
a path from u to v of length at most k. �

3.2 How Many Edges?

Ok, so H is a multiplicative spanner. Now we want to figure out how to bound the number of edges
we added to E′. First, define the girth of a graph G to be the length of the shortest cycle in G.

By the definition of the algorithm, the spanner H is guaranteed to have girth at least k+2. Indeed,
if there were a cycle of length k+1 or less, the last edge on this cycle would never have been added.
So, how many edges can I add to a graph so that the girth is no smaller than k + 2?

To get a sense of this question, consider the question for small values of k:

• How many edges can a graph of girth k + 2 = 3 have? Girth 3 excludes only parallel edges:
a complete graph Kn has girth 3 and

(
n
2

)
edges. So Ω(n2).

• For k = 2 (girth k + 2 = 4), we want to exclude 3-cycles. An easy way to exclude 3-cycles
is by taking any bipartite graph. A complete bipartite graph (i.e., the bipartite graph with
the most edges and many 4-cycles) has Ω(n2) edges, and girth 4. So we cannot get a bound
better than Ω(n2).

• It turns out that if k = 3 (girth k + 1 = 5), we can have at most O(n3/2) edges!

In fact we will prove the following theorem soon:

Theorem 4 For k = 2t or k = 2t− 1, any graph H with girth at least k + 2 has O(n1+ 1
t) edges

Combining this theorem with the observation about the girth of H, we get that a k-multiplicative
spanner has O(n1+2/k) edges if t is even, and O(n1+2/(k+1)) edges if t is odd.

3

3.3 Proof of Theorem 4

Ok, now to prove that any graph H with large girth has few edges. Here’s the general idea. Suppose
H has m edges and n vertices.

We show that H must contain a subgraph H ′ with almost as many edges as H, but
whose minimum degree is high. From this we deduce that n must be large compared
to m.

Now the details.

Lemma 5 Let d̄ := 2m
n be the average degree in a graph H. Then we can construct a nonempty

subgraph H ′ of H with minimum degree d̄/2.

Proof: We’ll build H ′ from H = (VH , EH) as follows: Let us start with V0 = VH and E0 = EH .
We now create a sequence of graphs, which will end with the final graph H ′.

1. Let i = 0.
2. While there exists a vertex v ∈ Vi with degree at most |Ei|

|Vi| , delete the vertex and all adjacent
edges:

a. i← i + 1
b. Vi ← Vi−1 \ {v}
c. Ei ← Ei−1 \ {(v, w) | v ∼ w}.

3. If no such vertex exists, we’re done — output H ′ = (Vi, Ei).

Clearly, H ′ has the property that it has no vertices of degree |Ei|/|Vi|, but how does this quantity
compared to d̄? Also, H ′ has no low-degree vertices, but it could be that H ′ has no vertices at
all! We will show both things using the same proof. First observe the following fact about real
numbers: For t ≤ x

y , the following holds

x− t

y − 1
≥

x− x
y

y − 1
=

x(1− 1
y)

y(1− 1
y)

=
x

y

Next, observe that the number of edges ` we remove is at most |Ei|/|Vi|, so the new ratio of edges
to vertices is

|Ei−1| − `

|Vi−1| − 1
=
|Ei|
|Vi|
≥ |Ei−1|
|Vi−1|

.

This chain of logic may be applied repeatedly to get us that

|Ei|
|Vi|
≥ |Ei−1|
|Vi−1|

≥ . . . ≥ |E0|
|V0|

=
m

n
=

d̄

2
> 0.

Since Ei is strictly larger than zero, H ′ is not empty. Moreover, the stopping condition says the
average degree of vertices in H ′ is at least |Ei|/|Vi| ≥ d̄/2. �

Now, we prove Theorem 4 using this lemma.

Proof: (of Theorem 3) Using Lemma 5, we extract a nonempty subgraph H ′ of H with minimum
degree d̄/2. Observe that H ′ will also have girth at least k + 2 since we couldn’t have created a
smaller cycle by removing vertices or edges.

Now fix any vertex as a root, and construct a BFS tree. Consider the nodes at level L < t of the
BFS in H ′.

4

Each such node u has one neighbor at level L−1, its parent. Can u have another one of its incident
edges to another node already at level L or earlier? No, because then there would be a cycle of
length at most 2L− 1 < 2t = k.

In fact, it cannot even have a neighbor at level L+ 1 in common with some other v, else you would
get a cycle of length 2L.

So all the d̄/2 − 1 other neighbors of u must all be disjoint at level L + 1. And hence level L + 1
must look like this:

So the BFS cannot end earlier, and in fact, the number of nodes at level L + 1 are greater than
the number at level L by (d̄/2 − 1). This is why the number of nodes at level t in H ′ is at least
(d̄/2− 1)t.

Since H ′ has at most n vertices, we get that n ≥ (d̄2 − 1)t, and solve for the desired result:(
d̄

2
− 1

)t

≤ n =⇒
(

2m/n

2
− 1

)t

≤ n

=⇒
(
m

n
− 1

)t

≤ n

=⇒ m ≤ n + n1+ 1
t = O(n1+ 1

t)

5

Hence H has at most O(n1+1/t) edges, as claimed. �

3.4 Tight Results?

Now we’ve proved an upper bound, can we find a matching lower bound? I.e., is it the case that
there are graphs with girth k + 2 where k = 2t or 2t− 1 with Ω(n1+ 1

t) edges. We don’t know: this
is a famous open problem called the Erdös Girth Conjecture!

If this were true, this means any k-multiplicative spanner H must have Ω(n1+ 1
t) edges. Why? If

we were to delete some edge {u, v} from a girth k + 2 graph G, the distance from u to v would be
k + 1 (since the smallest cycle is k + 2), so the only k-spanner of a graph G with girth k + 2 would
be G itself.

The girth conjecture on the number of edges is not known for all values of k - so far, its only been
proven for k = 1, 2, 3 and 5. (Extra credit if you can figure out how to prove it for k = 4)!

4 Additive Spanners

Note that the proof above implies that we find a 3-multiplicative spanner with O(n3/2) edges. In
this section we now give an algorithm to find a 2-additive spanner with almost the same number
of edges. Since a 2-additive spanner means

dH(u, v) ≤ dG(u, v) + 2 ≤ dG(u, v) + 2dG(u, v) = 3dG(u, v),

this is also a 3-multiplicative spanner (and much stronger)!

Our algorithm for finding a 2-additive spanner was to:

1. For each edge e = {u, v} ∈ E, if the degree of u or the degree of v is at most
√
n, then include

e in E′.
2. Uniformly sample a set S of 2

√
n lnn vertices of V . For each v ∈ S, grow a shortest path tree

Tv in the original graph G, and include all edges in Tv in E′.

4.1 Number of Edges

How many edges do we include in E′ in step (1)? Well each edge added in this step is incident to
at least one vertex of degree at most

√
n. There are trivially at most n, and each has degree at

most
√
n, in total there are at most n ·

√
n edges added in step (1).

How many edges did we include in E′ in step (2)? Each shortest path tree Tv has at most n − 1
edges (even fewer if the graph is disconnected), and there are |S| total shortest path trees that we
included, so in total we include at most

|S| · (n− 1) = (2
√
n lnn) · (n− 1) = O(n3/2 log n)

edges into E′ in this step.

That’s the whole algorithm, so in total |E′| has O(n3/2 log n) edges.

4.2 Why is it a 2-additive Spanner?

To prove H is a 2-additive spanner, for any u, v of vertices in V , we want their distance dH(u, v)
is at most dG(u, v) + 2. So let’s take a shortest path P from u to v in G (if there is more than one

6

shortest path, choose an arbitrary one). Then we want to find a u-v path P ′ in H of length |P ′| at
most |P |+ 2 = dG(u, v) + 2.

If each edge along P is included in step (1) above, the entire path P is in E′, and so we can just take
P ′ = P , and so there is no loss! Else there is some edge {c, d} which is in P but is not included in
step (1). Let {c, d} be the first edge we see when walking from u to v along P that is not included
in step (1). By our algorithm definition, c has degree at least

√
n.

Now we claim that we sample a neighbor e of c in step (2) with very high probability. Why? Each
vertex we add to S (suppose we sample vertices with replacement) is not a neighbor of c with
probability most

1− |N(c)|
n

≤ 1−
√
n

n
= 1− 1√

n
,

where N(c) ≥
√
n denotes the neighbors of c. So, the probability that every single one of our

vertices in our sample S is not a neighbor of c is

Pr[N(c) ∩ S = ∅] ≤
(

1− 1√
n

)|S|
≤ e−|S|/

√
n = e−(2

√
n lnn)/

√
n = e−2 lnn =

1

n2
.

Consider the “good” event E that says “for every vertex w of degree at least
√
n, sample S contains a

neighbor of w.” There are at most n vertices w of degree at least
√
n, and Pr[N(w)∩S = ∅] ≤ 1/n2,

by a trivial union bound, Pr[¬E] ≤ n · 1
n2 = 1/n, and therefore Pr[E] ≥ 1− 1/n.

So conditioned on the good event E holding, we sampled a vertex e that is a neighbor of c. So in
step (2) of our algorithm, we must have included a shortest path tree Te (with respect to graph G)
in our edge set E′. Since one path from node e to v in G is the path which uses edge {e, c} followed
by the edges along P from c to v, our shortest path tree Te will contain a e-v path Q of no greater
length, i.e., of length ≤ 1 + dP (c, v). (This is the orange path above.) Moreover, Q ⊆ Te ⊆ E′.

Now consider the path P ′ in H which walks along P from u to vertex c, then takes the edge {c, e},
and then finally takes the path Q. The length of this path P ′ is at most dP (u, c) + 1 + |Q|, and we
just said |Q| ≤ 1 +dP (c, v). So the length of P ′ is at most dP (u, c) + 1 + 1 +dP (c, v) = dG(u, v) + 2.
Since this held for an arbitrary pair of vertices u, v, it holds for all pairs of vertices (conditioned on
the event E above occurring).

Thus, overall, we get a randomized algorithm which takes an arbitrary input graph G, and with
probability at least 1− 1/n it outputs a 2-additive spanner with O(n3/2 log n) edges!

7

	Why Graph Compression?
	Spanners
	Multiplicative Spanners
	The Algorithm
	How Many Edges?
	Proof of Theorem 4
	Tight Results?

	Additive Spanners
	Number of Edges
	Why is it a 2-additive Spanner?

