Suffix Trees and Arrays

Purpose - pattern matching
Given a very long text \(T \), preprocess it, so that once a query text \(P \) is given, we can efficiently find if \(P \) appears in \(T \).

Suffix Trees (Weiner, 1973)
Used to search the human genome.

A suffix tree of a string \(s \) is a compressed trie that stores all suffixes of \(s \).

A compressed trie is a trie in which non-branching paths are stored as single node labeled with a string.

Suffix Tree

A suffix tree of a string \(s = abba \) is a compressed trie that stores all suffixes of \(s \).

Space complexity - ?
uncompressed vs. compressed...

Suffix Tree (uncompressed)

It is easily overcome by adding a special char $ to the end of each suffix.

Suffix Tree - GOOGOL

Here are all suffixes \(\epsilon, L, OL, GOL, OGOL, OOGOL, GOOGOL \)

Suffix Tree

Draw a suffix tree for **GOOGOL**
Space Complexity

Uncompressed: $O(s^2)$, where s is the string length.

To reduce space we store just indices.

Fact: compressed tree requires a linear space.

Proof:

1) #_leaves = #_suffixes
2) #_internal nodes < #_suffixes

Searching

Build a suffix tree for a text.
Traverse the tree according to the pattern.
If we did not get stuck traversing the pattern then the pattern occurs in the text.
The complexity is the pattern length.

How can we count occurrences of the pattern?

Occurrences of the pattern

The algorithm returns a subtree with all occurrences of a pattern (just count leaves).

Find the longest substring that appears more than once

We label each node with its depth.
Then we find the internal node with the largest depth.

Longest common substring

(of two strings)

Example: ALOHA and HELLO

Construct a new string a&b, where & is a special char.
Construct a suffix tree for a&b.
Each leaf represents a suffix that begins in a or in b.
Find the deepest node that belongs to both strings.
So, we can find a longest substring in a linear time.

Find the Longest Palindrome

Example: bananas

Construct a suffix tree for a string S_f and its reverse S_r.

For every suffix k in S_f, find the lowest common ancestor with the suffix $n-k+1$ in S_r.

Here n is the length of the string.

The path from the root to the LCA is a palindrome.

Building Suffix Trees in O(n) Time

We need some extra preprocessing:

a) Suffix array
b) Longest common prefix array

Suffix array is just the lexicographically sorted array of all its suffixes (indexes)

<table>
<thead>
<tr>
<th>k</th>
<th>A</th>
<th>B</th>
<th>N</th>
<th>A</th>
<th>N</th>
<th>A</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>$</td>
<td>$</td>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td></td>
<td>$</td>
</tr>
<tr>
<td>3</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>6</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

k-th suffix begins at position k.

6,5,3,1,0,4,2 is a suffix array.

Suffix Arrays

were introduced by Manber and Myers in 1989 (and published in 1993).

They take of a factor 4 less space than suffix trees.

They can be used for searching. $O(P + \log T)$

How would you search for a pattern?

Searching Suffix Arrays

Since suffix array is sorted we can use a binary search...

Let P be a pattern, and $A[k]$ is a suffix array. Compute

$L_p = \min\{k \mid P \preceq A[k] \text{ or } k = n\}$

$R_p = \max\{k \mid P \succeq A[k] \text{ or } k = -1\}$

as the left/right bounds.

At the start, $L_p = 0$ and $R_p = n$.

Pattern matches some $A[k]$ for $k \in [L_p, R_p]$