1. Short Answer Questions (32 pts)

For (a) and (b), assume the base-case $T(1) = 1$ and assume n is a power of 4.

(a) The recurrence $T(n) = 6T(n/4) + n^2$ solves to (circle one):

\[\Theta(n \log n) \quad \Theta(n^2) \quad \Theta(n^2 \log n) \quad \Theta(n \log_4 6) \]

(b) The recurrence $T(n) = 6T(n/2) + 1$ solves to (circle one):

\[\Theta(1) \quad \Theta(n^2) \quad \Theta(n^3) \quad \Theta(n \log_2 6) \]

(c) Merging 4 sorted lists, of n elements each, takes time: (pick the fastest possible using a comparison-based algorithm)

\[\Theta(n) \quad \Theta(n \log n) \quad \Theta(n^2) \quad \Theta(2^n) \]

(d) Merging n sorted lists, of 4 elements each, takes time: (pick the fastest possible using a comparison-based algorithm)

\[\Theta(n) \quad \Theta(n \log n) \quad \Theta(n^2) \quad \Theta(2^n) \]

(e) The summation $1^3 + 2^3 + 3^3 + 4^3 + \ldots + n^3$ solves to

\[\Theta(n^3) \quad \Theta(n^3 \log n) \quad \Theta(n^4) \quad \Theta(2^n) \]

(f) Suppose we have a graph with n nodes and m edges. If we randomly color each node red, green, or blue (each color with probability $1/3$), then the expected number of edges whose endpoints have different colors is:

\[m/9 \quad m/3 \quad m/2 \quad 2m/3 \quad m \]
(g) Draw a treap containing the following (key priority) pairs: (a 6), (b 8), (c 2), (d 4), (e 3), (f 6).

(h) Hash functions f_1 and f_2 map elements a, b, c, d to locations 0 and 1 as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Is $\{f_1, f_2\}$ a universal family of hash functions? Briefly explain why or why not.
2. Dynamic Programming (24 pts)

(a) Car-talk chauffeur Picov Andropov hates driving on congested roads. Picov has a map of the city represented as a weighted graph. Each edge e in the graph is labeled with a weight $\text{cong}(e)$ representing how congested that street is. We say that the congestion of a path is the most congested edge along that path. For example, in the graph below, the least-congested path from A to D is $A-C-D$ with congestion 3.

```
A 5 B
|   |
2  |
C--|---D
3  1
```

Suppose Picov wants to know for every pair of nodes (u, v), the value of the least-congested path from u to v in the graph. Show how we can modify the Floyd-Warshall Dynamic Programming algorithm to compute this. Circle the correct choice in each of the three underlined \{ \ldots \} below.

```
//A[i][j] = congestion of best i->j path that can only go through 1..k.
Initialize: A[i][i] = 0 for all i.
           A[i][j] = cong(i,j) if there is an edge i->j
           A[i][j] = \{0, 1, infinity\} otherwise

for k = 1 to n do:
  for each i,j do:
    // you either go through k or you don't.
    A[i][j] = \{ min, max \} \{ A[i][j], \{ min, max, sum \} (A[i][k], A[k][j]) \};
```

(b) Suppose you are a consultant. Your inbox has a collection of tasks a_1, a_2, \ldots, a_n to do. Each task a_i has a time-to-complete t_i, a deadline d_i, and a payment p_i. If task a_i is completed by time d_i, you collect p_i dollars (no payment if it is completed after its deadline). Assume that all quantities are positive integers, and let us say we have sorted the tasks by deadline so that $d_1 \leq d_2 \leq \ldots \leq d_n$.

Fill in the blanks in the following dynamic-programming algorithm (given in top-down or “memoized recursion” form) to calculate the maximum profit you can make. You would call this routine with $k = n$ and $t = d_n$. Assume the matrix AlreadyComputed is initialized to all -1’s.
maxprofit(k, t) // max profit for items 1..k, if we must end by time t.
{
 if (t < 0) return -infinity;
 if (k == 0) return 0;
 if (AlreadyComputed[k, t] != -1) return AlreadyComputed[k, t]; // done
 t = min(t, d_k); // can’t do anything after time d_k
 profit =
 max(maxprofit(k, t), // profit if don’t do task k.
 maxprofit(k, t) // profit if do task k.
);
 AlreadyComputed[k, t] = profit;
 return profit;
}

(c) The running time of this algorithm as a function of n and d_n is Θ(______).

3. Truth or counterexample (24 pts). For each statement below, indicate whether it
is true or false. If true, give a short proof. If false, give a counterexample.

(a) The shortest path tree from a given node S cannot have more than twice the
weight (sum of edge lengths) of the minimum spanning tree.
(b) If you run Prim’s MST algorithm from some start node \(s \), for \(k \) steps, then this produces the minimum-weight \(k \)-edge tree out of all \(k \)-edge trees containing \(s \).

(c) For any given permutation \(P \) of the numbers \(\{1, 2, \ldots, n\} \), let \(T_P \) be the binary search tree you get by inserting those numbers into a BST in that order using simple BST insertion. This mapping \(P \rightarrow T_P \) is 1-1: that is, if \(P \neq P' \) then \(T_P \neq T_{P'} \).
4. Amortized analysis (20 pts).

Suppose we had code lying around for implementing a stack, and we now wanted to implement a queue. One way to do this is to use two stacks S_1 and S_2. To insert into our queue, we push into stack S_1. To remove from our queue we first check if S_2 is empty and if so we dump S_1 into S_2 (we repeatedly pop the top off S_1 and push it onto S_2 until S_1 is empty). Then we pop from S_2. Here is pseudocode:

- insert(x): S_1.push(x)
- remove(): If S_2 is empty then dump(S_1, S_2). Return S_2.pop().
- dump(S_1, S_2): while S_1 is not empty do S_2.push(S_1.pop()).

Let’s say that each push costs 1 and each pop costs 1, and performing a dump when S_1 has n elements costs $2n$ dollars (since we do n pushes and n pops).

(a) Suppose that (starting from an empty queue) we insert 3 elements, then remove 1 of them. What is the total cost of these 4 operations?

(b) Circle the smallest correct answer. Suppose we perform n operations (inserts and removes) starting from an empty queue. Then the amortized cost per operation is at most:

$\$1 \quad \$2 \quad \$3 \quad \$4 \quad \$\lg(n) \quad \$n \quad \$2n$

(c) Give a proof of your answer in (b) using the bank/potential-function method. Specifically,

- For an insert, the actual cost is 1, plus we put _______ in the bank, for a total out-of-pocket cost of _______.
- So, the out-of-pocket cost for a dump is _______.
- This means that overall, the amortized cost per insert is at most _______ and the amortized cost per remove is at most _______. The worst of these is _______, which is the answer circled above.

(d) Formally, the potential function used above is: