Ground rules:

- This is an oral presentation assignment. You should work in groups of three. At some point before March 20, your group must sign up for a 1-hour time slot on the signup sheet on the course web page.
- Please write up (and turn in during your presentation) the parts below that specifically require a write-up, as indicated below.
- During the presentations, you may be asked to explain why your algorithm is correct.
- This is a fairly long assignment – so it’s recommended that you start to think about it soon.

Problems:

1 The Triage Before Spring Break

Read problem 20 on page 329 of the textbook.

(a) Solve it, and write-up your algorithm formally in pseudo-code.

(b) Now suppose for each course i you have a minimum desired grade, g_i, which is an integer. Your new goal is to maximize the average grade you receive (again as measured by the functions f_i) subject to the constraint that you get a grade of at least g_i in course i. If there is no way to divide your work that satisfies these constraints, your algorithm should indicate this, e.g. by returning “instance is infeasible”. Write-up your algorithm formally in pseudo-code.

2 The Spring Break Cruise

It’s spring break and you are on a cruise in the Caribbean. There is a set of activities A on the cruise, which you’ve read about. Furthermore, some of the activities happen at the same time, and you can only do one activity at a time. We’ll model this by partitioning A into $\{A_1, A_2, \ldots, A_k\}$ where A_i are the activities that are at time i. Thus you can do at most one activity in each A_i. For each activity $a \in A$, you have rated it for fun value, denoted $f(a)$. You’ve also estimated how much sun exposure you’ll get if you go to event a, say $s(a)$. Now, getting just the right tan is essential to you, so you also have minimum and maximum levels of sun exposure, which we’ll call s_{min} and s_{max}. All values are non-negative integers. Your goal is select a set of activities I to go to such that your total fun $f(I) := \sum_{i \in I} f(i)$ is maximized, subject to the constraint that you get the right tan (i.e. $s(I) \in [s_{\text{min}}, s_{\text{max}}]$). Of course, you also need to ensure that you only include at most one activity per time slot (i.e. $|I \cap A_i| \leq 1$).

(a) Give an algorithm for this problem, whose running time is polynomial in $|A|$ and s_{max}. Write-up your algorithm formally in pseudo-code.

(b) Now suppose each activity $a \in A$ costs some amount of money $c(a)$ (a non-negative integer) and you have B dollars you’re willing to spend on activities. Give an algorithm that maximizes $f(I)$ under the constraints that $s(I) \in [s_{\text{min}}, s_{\text{max}}]$ and $c(I) \leq B$. Its running time should be polynomial in $|A|$, s_{max}, and B. Write-up your algorithm formally in pseudo-code.
3 The Spring Break Road trip

While you are on your cruise, your friends are going on a road trip to San Francisco immediately after midterms. To plan the trip, they have laid out a map of the U.S., and marked all the places they think might be interesting to visit along the way. However, the requirements are:

1. Each stop on the trip must be closer to SF than the previous stop.
2. The total length of the trip can be no longer than D.

They want to visit the most places possible subject to these conditions. Unfortunately, they don’t have your algorithmic prowess, and ask for your help in planning their trip.

As a first step, you create a DAG with n nodes (one for each location of interest) and an edge from i to j if there is a road from i to j and j is closer to SF than i. Let d_{ij} be the length of edge (i, j) in this graph.

Help out your friends by giving an $O(mn)$-time algorithm to solve their problem. Specifically, given a DAG G with lengths on the edges, a start node s, a destination node t, and a distance bound D, your algorithm should find the path in G from s to t that visits the most intermediate nodes, subject to having total length $\leq D$. Write-up your algorithm formally in pseudo-code.

(Note that in general graphs, this problem is NP-complete: in particular, a solution to this problem would allow one to solve the traveling salesman problem. However, the case that G is a DAG is much easier.)