15-451/651: Design & Analysis of Algorithms November 29, 2018
Lecture #25: Burrows-Wheeler Transform last changed: November 29, 2018

We’re going to see next a different kind of operation on strings, called the Burrows-Wheeler Trans-
form (BWT). This transformation of a string has been useful in compression — that was its original
motivation, and the b in bzip2 stands for this — but it also has formed the basis of a number of
modern string algorithms that can operate on text using a small amount of space. The BWT was
invented in 1983, and published as a tech report in 1994 by Burrows and Wheelerﬂ

We will see:

e How to compute the BWT of a string.
e Intuition about why the BWT is useful in compression.
e How to invert the BWT to recover the original string.

e How to use the BWT to search a compressed string.

1 The Burrows-Wheeler Transform

Let S be a string of length n over an alphabet ¥. We will assume all of our strings end with a
special, unique character $. We will compute bwt(S), which is another length n string that is a
permutation of the characters of S. Just as with suffix arrays, we will first define the BWT as the
output of a slow algorithm, but then see how to compute it more quickly.

A string y - z is a cyclic rotation of a string S if S = = -y, where z,y are strings and the - operator
indicates concatenation. For example, if S = banana$, then ana$ban is a cyclic rotation of S (with
y = ana$ and x = ban). To compute the BWT (slowly), list all of the cyclic rotations of S, and
then sort them lexicographically. Again, supposing S = banana$:

banana$ $banana
anana$b a$banan
nana$ba ana$ban
ana$ban --> anana$b
na$bana banana$
a$banan na$bana
$banana nana$ba

The matrix of characters on the right is the BWT matriz. Let Mg be this matrix for a string S.
We define bwt(S) to be the string of characters in the last column of Mg. In the above example,
bwt(S) = annbSaa. Formally,

bwt(S) = Mg[0,n —1]- Mg[l,n —1]-...- Mgn —1,n — 1]

where n is the length of S.

"http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124 . pdf

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

1.1 Why is this useful for compression?

Notice in our example above that the transformation tended to group equal characters together.
There is intuition behind this, given by Burrows and Wheeler in their original paper. The right
suffiz of character s; is the substring $;4+18;42 ... Sp—1. Consider the word “the”. Every place “the”
occurs, the right suffix of the “t” will start with he.... The rows starting with these right suffixes
will be near each other in the BWT matrix because the rows are sorted. For each of these, “t” will
be the last character of the row, because the last character of each row comes before the start of its
row in S since we are dealing with cyclic rotations. So these “t” instances will be near each other
in the BWT.

Intuitively, strings that have regions of low complexity, with lots of equal characters, are easier to
compress (e.g. “aaaaabaaa’ can be encoded as balb3a (or similar), while “abababbba” is harder
to encode that way).

1.2 Recovering the original string its BWT

This nice compression property wouldn’t be that useful if we couldn’t recover the original string.
Luckily, (and sort of amazingly) we can recover the string from just the BWT of the string. We’ll
first see a computationally slow way to do this, and later see a faster way.

We will recover the string by recovering the BWT matrix from just the BWT string. We can
recover the string as the first row of this matrix (which will start with “$”).

Let’s see how to recover the matrix. First, note that it is easy to recover the first column of Mg.
It is simply the letters of S sorted alphabetically. Let’s call this first column F'. Let’s also call the
last column (the BWT) L, with the entires of these strings denoted Fj, L;. Because the matrix Mg
consists of all the cyclic shifts, L; precedes F; in S for each 1.

Denote by L - F' the “vertical concatenation“ of the L and F' columns. That is, this creates a
two-column matrix LF, with row ¢ equal to L; - F;. These two character strings all occur in S.
In particular, they each occur at the start of some cyclic rotation. We therefore can sort LF
alphabetically to recover now the first two columns of Mg. We now repeat, computing sort(L- LF)
to recover the first 3 columns, and so on. After O(n) iterations, we have recovered the entire matrix.

Here’s an example:

0\
o s
<L @ \\3‘(\“

BWT sort _» (\(1 ©

) J\BWT /'(\\'s‘-
e$ $a e $a $ap

$appellee

appellee$ $a ap $ ap app

e$appelle| e e e$ e 6$ e$a

ee$appell sort prepend Sort

ellee$app I — these 2 > ce BWT — I €€ _ these3 > ee$

lee$appel pe columns el column) e| columns ell

llee$appe

velleaton| | | le | le lee

ppelleesa| e | I e ll lle
PP pe ppe pel
ap PP app ppe

This takes O(n3logn) time: O(n) iterations, with O(nlogn) comparisons to sort, each comparison
taking O(n) time. Obviously, this is inefficient. But it at least shows that the BWT of a string
contains all of the information to reconstruct the string!

1.3 Faster computation of the BWT

Our naive algorithm to compute the BWT created the entire BWT matrix takes time O(n?logn)
to sort n strings (each of the cyclic rotations), each comparison taking O(n) time. In fact, we can
compute the BWT from the suffix array of a string in O(n) time. This is because the suffix array
and BWT string are very closely related.

Recall that the suffix array was created (conceptually) by sorting all the suffixes of S. Consider
the BWT matrix Mg but with, in each row, the characters after the “$” deleted. Each row in this
new matrix represents a suffix of S, and they are still in sorted order because $ comes before every
letter. So the suffix array of S is the indices of the suffixes in the order that they appear in Mg.

Consider row i of Mg. The suffix in this row is given by SA[i], where SA is the suffix array of
S. Now, the ith letter of the BWT is the one that comes just before this suffix: S[SA[i] —1]. So
bwt(S) can be computed by (assuming 1-indexing for everything):

BWTfromSA(S, SA):
bwt = [’x’] * n
for i =1 ... n:
bwt[i] = S[SA[i]-1]
return bwt

allocate space for the BWT

use BWT <-> SA correspondence

This is just O(n) array lookups. Next lecture, we will see a fast O(nlogn) algorithm to compute
the suffix array of a string. So, combined, this gives a O(nlogn) algorithm to create the BWT.

Here’s an example (again assuming 1-indexing):

$appellee $ w 9 s[9-1]=e
appellee$ appellee$ I s[1-1]1=$%
e$appelle e$ These are still in 8 s[8-1]=e
ee$appell ee$ sorted order 7 s[7-1]=1
ellee$app ellee$ % because “$” 4 |~ subtract 1 = g[4.1]1 =p
lee$appel lee$ comes before 6 s[6-11=1
llee$appe llee$ everything else 5 s[5-11=e
pellee$ap pellee$ 3 s[3-11=p
ppellee$a ppellee$ J 2 s[2-1]=a
BWT The suffixes Suffix array Suffix position - | =
matrix are obtained (start position the position of the
by deleting for the suffixes) last character of
everything the BWT matrix
after the $

($ is a special case)

Handling the $ character is a minor special case. Since the $ character appears at the end of the
first suffix, when we look at the character “before” this suffix, we really mean the last character of
the string (aka $). This is a minor change to the pseudocode above.

3

1.4 Faster inversion of the BWT

Next, let’s see a way to invert the BWT that is faster. This faster algorithm uses a very important
property of the BWT matrix called the LF mapping property. This property gives a relationship
between the order of characters in the last and first columns of the BWT matrix.

Theorem 1 (LF mapping) For every character ¢ € 3, the ith occurrence of ¢ in L corresponds
to the same character in S as the ith occurrence of ¢ in F, for every i.

Proof: Define the right context of a character F; to be the n — 1 remaining columns of the BWT
matrix. In F', all occurrences of ¢ are together in a single interval, and they are ordered by their
right contexts. In L, the occurrences of ¢ can be scattered in L, but they are also ordered by their
right contexts since Mg has cyclic rotations. Since they are sorted according to the same string,
they are in the same order. |

Here’s a figure illustrating the above proof:

$dogwood $dogwood
d$dogwoo
dogwood$ dogwood$
gwood$do gwood$do
od$dogwo d$dogwio
ogwood$d ogwood$d
o ood$dogw
wood$dog wood$dog

The red boxes at left show the right contexts of the “0” characters. The “0”s in this range are
ordered by the strings in these boxes. At right, the green boxes show the right contexts of the “0”
characters in L. Now, the “right contexts” are at the left because of the cyclic rotation. The order
of the “0”s in L are determined by these right contexts. Since the “0”s are sorted by the same
“key” in both L and F', they must be in the same order. Note that there are no ties in the ordering
because of the $ character.

1.4.1 Inversion algorithm

The LF property lets us invert the BWT directly. We reconstruct S starting from the end of S.
S ends with $, which is the first character of F'. Which character comes just before $? The first
character of the BWT string (aka L). So, now we know S ends with Lo$. This is general: the pairs
(L;, F;) give predecessor relationships. That is, F; is the character immediately preceding L; in S.
This follows (again) from the fact that we are dealing with cyclic rotations.

Continuing our example: We know the string ends with LgFp, and now we want to find the
predecessor to Lg. To do this, we need to find the correct occurrence of Ly in F'. Here’s where
we use the LF mapping property: If Ly is the ith occurrence of the character Ly in L, then the
corresponding character is the ith occurrence of the character Lg in F.

But the ith occurrence of a character ¢ in F is easy to find if we keep an array C' where C|[c] is the
row at which the range of ¢ characters starts in F'. C can be precomputed by scanning L, counting
the number of occurrences of each character. Then, the location of ith occurrence of any character
¢ in F can be computed as Clc] +i — 1.

The last piece of the puzzle: when we are looking at L;, how do we know how many instances of
the character L; occur before position j in L? In other words, define rank(j) to be the number of
occurrences of the character L; that occur in positions < j. How do we know rank(j)? The answer
is we can pre-compute these as well, creating a n-long array rank where rank|[j] is the number of
occurrences of character L; before or at position j of L.

This leads to the following algorithm to recover S from bwt(.S):

S =%
p=20
for i =1 .. n-1:
predecessor = L[p] # char to prepend
S = predecessor . S # prepend it to S
p = Clpredecessor] + rank[p] - 1 # find the right row in F

return S

This runs in O(n) time. The arrays rank and C can be computed in O(n) time with a single scan
of L. Notice that the algorithm only implicitly uses F' — it doesn’t construct the F' string directly.
This is possible because F' has such a simple structure.

Here’s an example:

The small numbers next to each character gives the rank of the character. Following the arrows in
the order of their numbers will spell out the original string. Each solid arrow connects the equal
characters of equal ranks in L and F. For clarity, only the first predecessor arrow is show (all these
arrows go horizontally left to right).

There are some tricks that can be used to speed this up even more. First, it is possible to operate
on a compressed version of L rather than L directly. Second, it is possible to reduce the size of the
rank array via subsampling. These ideas were worked out by Ferragina and Manzini in 2000. We
won’t have time to cover them, but they are explained well in Ben Langmead’s slideﬁﬂ

2 Applications of the BWT

2.1 Search

The BWT can be directly searched to answer the question “does a string ¢ occur in S?7”. To do this
will require expanding our rank array somewhat to make it efficient, but first let’s see the main
idea.

thtp ://www.cs. jhu.edu/~langmea/resources/lecture_notes/10_bwt_and_fm_index_v2.pdf

5

http://www.cs.jhu.edu/~langmea/resources/lecture_notes/10_bwt_and_fm_index_v2.pdf

The first idea is to search ¢ = qy, .. ., g, left-to-right. That is we will first match the last character
of g, then ¢,,—1, and so on. The reason to do this is the same reason that we invert bwt(S) from
last character to first character: because (F;, L;) gives a predecessor relationship.

Also, as with the inversion algorithm, we are going to be conceptually alternating between looking
at L and F.

To start then, we're looking for occurrences of ¢,,. We can find the range of these in F' in the same
way as before using the C' array. Let [u, d] be the range of rows starting with ¢,,,. We then look at
the same range in L. If ¢ occurs in S, ¢,—1 at least once in this range.

Suppose the rank of the first occurrence of ¢,_1 in this range is «' and the rank of the last
occurrence of g,,_1 in the range is d’. Look now at the range for ¢,,_1 in F. The only instances of
the characters that we care about in this range are those with rank between v’ and d’. Again by
the LF-mapping property, since the instances of ¢,,—1 in this range are all those within an interval,
they are also exactly the instances within some range in F. And this range is easy to find: it’s
(Clgm-1] + v —1,Clgm—1] +d" —1).

We update v and d to be this range, and we just repeat, now looking for ¢,,_o, and so on. If we
are able to continue this way through all of ¢ without the range [u, d] becoming empty, we know ¢
occurs in S. If [u, d] becomes empty, we report that ¢ does not exist.

Here’s an example:

BWTSearch(abb):
BWT(abbbaba)

Sabbbaba Sabbbaba Sabbbaba

asSabbbab aSabbbab aSabbbab

abasabbb abaSabbb abaSabbb

abbbaba$ abbbaba$ u=d=3
u=4 ' basSabbba baSabbba baSabbba

babaSabb |<uw=3 babas$abb baba$abb

bbabaSab |<d=4 u=6 | bbabaSab bbaba$ab
d=7 |bbbabasa d=7 |bbbabafa | y=q=3 bbbabaSa

Note that we do not have an easy way to find where ¢ occurs. To do that, one must store extra
data structures. We can however count the number of occurrences: it is the number of positions
inside the final [u, d] range.

One last detail: how do we efficiently find ' and d’? We could linearly scan the rank array, since u’
and d’ are just the ranks of the first and last occurrence of the character within the current range.
This is too slow, however. Instead, we expand our rank array to have n x |X| entries, where

Rank(i,c) = # occurrences of ¢ at positions < i in L
Now, at a step when we are looking for character ¢, we have
u' = Rank(u—1,c) + 1
d = Rank(d,c)

This new Rank array is somewhat larger than our old rank. Though if |X| = O(1), it is still linear
in the size of L. It turns out that again via subsampling, this array can be made smaller.

6

2.2 Compression

BWT was originally motivated by compression, and Burrows and Wheeler give in their paper a
specific implementation of an algorithm to compress that takes advantage of the BWT’s reordering
properties. Their algorithm is based on a general “move-to-front” (MTF) compression scheme,
which was introduced by Bentley, Sleator, Tarjan and Wei in 198€ﬂ It turns out that the BWT
is particularly suited to this kind of scheme, because MTF is adaptive: as the frequency of letters
change, the code adapts, using fewer bits to encode more frequent characters.

Let’s see this compression scheme. The best way to explain it is to think of the compressor C
sending a string S to the decompressor D over a lossless, perfect channel. This channel might be
a file on disk and the write and read steps might be separated in time indefinitely. In the MTF
scheme, each of C' and D maintain separate lists Lo and Lp of characters that they will update to
keep in sync. To send a character z, C' and D communicate in the following way:

Move-to-front compression Send(x):

1. C finds z in the list Lo. If 2 is not in the list, append it to the end. Let i, be the position
of x in the list (1-based).

2. C sends i, to D (using a variable number of bits — see below). If i, = |L¢|, indicating that
we just added zx to the list, C' also sends =x.

3. D receives iy. If i, > |Lpl|, D reads a character = from the channel and appends it to Lp.
4. D prints the character at position i, of Lp.

5. Both C and D move z to the front of their lists.

Since C and D add characters to the end of their lists at the same time, and reshuffle their lists
in the same way, Lo and Lp are the same list of characters throughout the communication. This
means that D will decode the message correctly.

What does this have to do with compression? Frequently used characters will end up near the
front of the lists since each time they are used they are moved to the front. We saw earlier that
MTF was a 4-competitive algorithm for list update when charging for access time. That means
that MTF keeps the lists accesses short for frequently accessed items. So, i, in step [2] will generally
be a small number for common characters. We take advantage of that by using a variable number
of bits to send i,: common characters will have small numbers that can be encoded in few bits.
Rarer characters will have larger codes, but are rarer.

Here’s an example:

> doS$oodwg
$dgow 1
d$gow 13
od$gw 132
$odgw 1321

o$dgw 13210

o$dgw 132102

do$gw 1321024

wdo$g 13210244 = MTF(doSoodwe)

3J. L. Bentley, D. D. Sleator, R. E. Tarjan, V. K. Wei, A Locally Adaptive Data Compression Scheme, Commu-
nications of the ACM-Vol. 29, No. 4, 1986

In the example above, the protocol is modified bit: when X is small, both C' and D can start with
the letters of ¥ in some predetermined order.

A specific way to do this is with a “prefix code”. To send ¢ > 1, we send |logyi| 0’s, followed by
the binary encoding of i using |logyi| + 1 bits. This gives a codeword for ¢ of length 1 + 2|logi].

Theorem 2 If b occurs ny times in string S of length n, then the average cost to transmit b using
the MTF procedure above is:
1+ 2log(n/ny)

Proof: Let n be the length of S and consider a character b that occurs n, times in S. Let p; be
the position of b in Lo when b is transmitted for the ith time (i = 1,...,n,). The average cost of
sending b is then (ignoring floors and ceilings for convenience):

1 & 1
avgcost(b) = - Z(Qlogpi +1)=1+ QZ - log p;
i=1 i=1

because to increment the position of b, some other character must be output and moved to the
front. Combining with the above, we have

Since log is a concave function, we have y ./, n%; logp; < logd_ i, 2. In addition, Yot <n

avgcost(b) < 1+ 2log E bi <1+ 2log(n/ny).
— Tp
i=1

The bound in the above theorem has a nice interpretation: the average position of b in the MTF
list is < m/ny. So, the average cost of sending b is less that the cost of the average. It also turns
out that transmitting with the optimum, static prefix code must use at least log(n/ns) bits for each
character. This implies

Theorem 3 Let M(S) be the average number of bits per character used to compress S with MTF,
and let OPT(S) be the average number of bits per character used in an optimal, static prefix code.
Then M(S) < 20PT(S) + 1.

	The Burrows-Wheeler Transform
	Why is this useful for compression?
	Recovering the original string its BWT
	Faster computation of the BWT
	Faster inversion of the BWT
	Inversion algorithm

	Applications of the BWT
	Search
	Compression

