NP-completeness

Slides by Carl Kingsford

The class P

P is the set of decision problems whose memberships are decidable
by a Turing Machine that makes a polynomial number of steps.

By the Church-Turing thesis, this is the “same” as:

P is the set of decision problems that can be decided by a computer
in a polynomial time.

You can just think of your normal computer as a Turing Machine
— and we won't worry too much about that formalism.

Efficient Certification

Def. An algorithm V is an efficient certifier for decision problem X
if:

1. V is a polynomial time algorithm that takes two input strings
I (instance of X) and C (a certificate).

2. V outputs either yes or no.

3. There is a polynomial p(n) such that for every string /:

I € X if and only if there exists string C of length
< p(|1]) such that V(I,C) = yes.

V is an algorithm that can decide whether an instance / is a yes
instance if it is given some “help” in the form of a polynomially
long certificate.

The class NP

NP is the set of languages for which there exists an efficient certifier.

The class NP

NP is the set of languages for which there exists an efficient certifier.

P is the set of languages for which there exists an efficient certifier
that ignores the certificate.

A problem is in P if we can decided it in polynomial time. It is in
NP if we can decide it in polynomial time, if we are given the right
certificate.

P C NP

Theorem. P C NP

Proof. Suppose X € P. Then there is a polynomial-time algorithm
A for X.

To show that X € NP, we need to design an efficient certifier
B(l,C).

Just take B(/,C) = A(/). O

Every problem with a polynomial time algorithm is in NP.

P # NP?

The big question:

P= NP?

We know P C NP. So the question is:
Is there some problem in NP that is not in P?

Seems like the power of the certificate would help a lot.
But no one knows. . ..

Reductions

Def. Problem X is polynomial-time reducible to problem Y if

> there is a polynomial-time algorithm A
» that converts instances of X into instances of Y such that

» for all I:
A(l) =yes < [=yes

We denote this by X <p Y.

Reductions for Hardness

Theorem. If Y <p X and Y cannot be solved in polynomial time,
then X cannot be solved in polynomial time.

Why? If we could solve X in polynomial time, then we'd be able to
solve Y in polynomial time using the reduction, contradicting the
assumption.

So: If we could find one hard problem Y, we could prove that
another problem X is hard by reducing Y to X.

NP-completeness

Def. We say X is NP-complete if:

» X € NP
» forall Y e NP, Y <p X. @
If these hold, then X can be used to @/ %

solve every problem in NP.
NP

Therefore, X is definitely at least as
hard as every problem in NP. @

NP-completeness and P=NP

Theorem. If X is NP-complete, then X is solvable in polynomial
time if and only if P = NP.

Proof. If P = NP, then X can be solved in polytime.

Suppose X is solvable in polytime, and let Y be any problem in
NP. We can solve Y in polynomial time: reduce it to X.

Therefore, every problem in NP has a polytime algorithm and
P = NP.

10

Reductions and NP-completeness

Theorem. If Y is NP-complete, and

1. X isin NP
2. Y<p X

then X is NP-complete.
In other words, we can prove a new problem is NP-complete by

reducing some other NP-complete problem to it.

Proof. Let Z be any problem in NP. Since Y is NP-complete,
Z <p Y. By assumption, Y <p X. Therefore: Z <p Y <p X. O

11

Chain of Reductions
Cook-Levin Theorem: The problem SAT is NP-complete.

Any problem in NP

!

SAT
!
3SAT
A
Independent Set Hamiltonian Cycle Graph Coloring 3-dimensional Matching
' | l
Vertex Cover Hamiltonian Path Subset Sum

| !

Set Cover Traveling Salesman

12

Boolean Formulas

Boolean Formulas:

Variables: x1,x2,x3 (can be either true or false)

Terms: t,tz,..., t;: tjis either x; or X;
(meaning either x; or not x;).

Clauses: t; Vo V---V t, (V stands for “OR")

A clause is true if any term in it is true.

Example 1: (Xl V)?2), ()?1 V)?3), (X2 V \73)

Example 2: (X1 V xo V)?3), ()?2 V X1)

13

Boolean Formulas

Def. A truth assignment is a choice of true or false for each
variable, ie, a function v : X — {true, false}.

Def. A CNF formula is a conjunction of clauses:
GANG AN NC

Example: (x1 V) A (X1 V X3) A (x2 V v3)

Def. A truth assignment is a satisfying assignment for such a
formula if it makes every clause true.

14

SAT and 3-SAT

Problem (Satisfiability (SAT)). Given a set of clauses
Ci,..., Ck over variables X = {x1,...,xn} is there a satisfying
assignment?

Problem (Satisfiability (3-SAT)). Given a set of clauses
Ci,..., Cx, each of length 3, over variables X = {x1,...,xp} Is
there a satisfying assignment?

15

Cook-Levin Theorem
Theorem (Cook-Levin). SAT is NP-complete.

Proven in early 1970s by Cook. Slightly different proof by Levin
independently.

Idea of the original proof: encode the workings of a
Nondeterministic Turing machine for an instance / of problem

X € NP as a SAT formula so that the formula is satisfiable if and
only if the nondeterministic Turing machine would accept instance
I.

Another intuition why this is true: A computer is just a circuit, and
SAT encodes a kind circuit.

16

Reducing 3-SAT to Independent Set

Thm. 3-SAT <p Independent Set

Proof. Suppose we have an algorithm to solve Independent Set,
how can we use it to solve 3-SAT?

To solve 3-SAT:

» you have to choose a term from each clause to set to true,

> but you can't set both x; and X; to true.

17

3-SAT <p Independent Set

(x4 vxzvg)A(x2vX3v)G)/\(x1 vx_2vx4)

Proof

Theorem. This graph has an independent set of size k iff the
formula is satisfiable.

Proof. = If the formula is satisfiable, there is at least one true
literal in each clause. Let S be a set of one such true literal from
each clause. |S| = k and no two nodes in S are connected by an

edge.

= If the graph has an independent set S of size k, we know that
it has one node from each “clause triangle.” Set those terms to
true. This is possible because no 2 are negations of each other. [J

10

3-Dimensional Matching is
NP-complete

Two-Dimensional Matching

Recall 2-d matching':

Given sets X and Y, each with n
elements, and a set E of pairs {x, y},

Question: is there a choice of pairs
such that every element in X U Y is
paired with some other element?

Usually, we thought of edges instead of
pairs: {x,y}, but they are really the
same thing.

21

Three-Dimensional Matching

Given: Sets X, Y, Z, each

of size n, and a set
T cCXxY x Zof order
triplets.

Question: is there a set of
n triplets in T such that

each element is contained
in exactly one triplet?

29

3DM Is NP-Complete

Theorem. Three-dimensional matching (aka 3DM) is
NP-complete

Proof. 3DM is in NP: a collection of n sets that cover every
element exactly once is a certificate that can be checked in
polynomial time.

Reduction from 3-SAT. We show that:

3-SAT <p 3DM

In other words, if we could solve 3DM, we could solve 3-SAT.

bl

3-SAT <p 3DM

3SAT instance: xi,...,x, be n
boolean variables, and Gy, ..., Cx
clauses.

We create a gadget for each variable x;:

A,' = {a,-l, ey a,'yzk} core
Bi ={aj1,...,ai2c} tips
tij = (a,-j, aj j+1, b,'j) TF triples

24

Gadget Encodes True and False

75

Gadget Encodes True and False

25

Gadget Encodes True and False

25

How “choice” is encoded

We can only either use the even or
odd “wings” of the gadget.

In other words, if we use the even
wings, we leave the odd tips
uncovered (and vice versa).

Leaving the odd tips free for
gadget / means setting x; to false.

Leaving the odd tips free for
gadget i means setting x; to true.

26

Clause Gadgets

Need to encode constraints between the tips that ensure we satisfy
all the clauses.

We create a gadget for each clause C; = {t1, to, t3}

— fe
Pj ={cj,cj} Clause core

We will hook up these two clause core nodes with some tip nodes
depending on whether the clause asks for a variable to be true or
false.

See the next slide.

27

Clause Gadget Hookup

Add tuple (cq.c'y, b; o) if x; in clause

Add tuple (cq, ¢'q, by 1) if x; in clause

28

Clause Gadgets

Since only clause tuples (brown) cover ¢j, ¢/, we have to choose
exactly one of them for every clause.

We can only choose a clause tuple (c;, cjf, bjj) if we haven't chosen
a TF tuple that already covers b;.

Hence, we can satisfy (cover) the clause (c;, ¢;) with the term
represented by b;; only if we “set” x; to the appropriate value.

That's the basic idea. Two technical points left...

20

Details

Need to cover all the tips:

Even if we satisfy all the clauses, we might have extra tips left
over. We add a clean up gadget (gj, g/, b) for every tip b.

Can we partition the sets?

X ={ajj:jeven} U{c} U{qi}
Y = {a;:j odd} U {c]} U{q}}
Z = {bjj}

Every set we defined uses 1 element from each of X, Y, Z.

20

Proof

If there is a satisfying assignment,

We choose the odd / even wings depending on whether we set a
variable to true or false. At least 1 free tip for a term will be
available to use to cover each clause gadget. We then use the
clean up gadgets to cover all the rest of the tips.

If there is a 3D matching,

We can set variable x; to true or false depending on whether it’s
even or odd wings were chosen. Because {c;, cJ’} were covered, we
must have correctly chosen one even/odd wing that will satisfy this
clause.

21

