15-451/651: Design & Analysis of Algorithms October 9, 2018
Lecture #12: Game Theory, Zero-sum Games last changed: October 8, 2018

In today’s lecture, we’ll talk about game theory and some of its connections to computer science.
The topics we’ll cover are:

e 2-player Zero-sum games, and the concept of (minimax) optimal strategies.
e The connection of 2-player zero-sum games to randomized algorithms.
e And time permitting, general sum-games, and the idea of a Nash equilibrium.

1 Introduction to Game Theory

Game theory is the study of how people behave in social and economic interactions, and how they
make decisions in these settings. It is an area originally developed by economists, but given its
general scope, it has applications to many other disciplines, including computer science.

A clarification at the very beginning: a game in game theory is not just what we traditionally think
of as a game (chess, checkers, poker, tennis, or football), but is much more inclusive — a game is
any interaction between parties, each with their own interests. And game theory studies how these
parties make decisions during such interactionsE]

Since we very often build large systems in computer science, which are used by multiple users,
whose actions affect the performance of all the others, it is natural that game theory would play
an important role in many CS problems. For example, game theory can be used to model routing
in large networks, or the behavior of people on social networks, or auctions on Ebay, and then to
make qualitative/quantitative predictions about how people would behave in these settings.

In fact, the two areas (game theory and computer science) have become increasingly closer to each
other over the past two decades — the interaction being a two-way street — with game-theorists
proving results of algorithmic interest, and computer scientists proving results of interest to game
theory itself.

2 Some Definitions and Examples

In a game, we have

e A collection of participants, often called players.

e Each player has a set of choices, called actions, from which players choose about how to play
(i.e., behave) in this game.

e Their combined behavior leads to payoffs (think of this as the “happiness” or “satisfaction
level”) for each of the players.

Let us look at some examples: all of these basic examples have only two players which will be easy
to picture and reason about.

2.1 The Shooter-Goalie Game

This game abstracts what happens in a game of soccer, when some team has a penalty shot. There
are two players in this game. One called the shooter, the other is called the goalie. Hence this is a

'Robert Aumann, Nobel prize winner, has suggested the term “interactive decision theory” instead of “game
theory”.


http://en.wikipedia.org/wiki/Robert_Aumann

2-player game.

The shooter has two choices: either to shoot to her left, or shoot to her right. The goalie has two
choices as well: either to dive to the shooter’s left, or to the shooter’s right. Hence, in this case,
both the players have two actions, denoted by the set {L, R}EI

Now for the “payoffs”. If both the shooter and the goalie choose the same strategy (say both choose
L, or both choose R) then the goalie makes a save. Note this is an abstraction of the game: for now
we assume that the goalie always makes the save when diving in the correct direction. This brings
great satisfaction for the goalie, not so much for the shooter. On the other hand, if they choose
different strategies, then the shooter scores the goal. (Again, we are modeling a perfect shooter.)
This brings much happiness for the shooter, but the goalie is disappointed.

Being mathematically-minded, suppose we say that the former two choices lead to a payoff of +1
for the goalie, and —1 for the shooter. And the latter two choices lead to a payoff of —1 for the
goalie, and +1 for the shooter. We can write it in a matrix (called the payoff matriz) thus:

payoff goalie
matrix M L ‘ R
shooter L || (=1,1) | (1,—1)
R (1,-1) | (=1,1)

The rows of the game matrix are labeled with actions for one of the players (in this case the shooter),
and the columns with the actions for the other player (in this case the goalie). The entries are pairs
of numbers, indicating who wins how much: e.g., the L,L entry contains (—1, 1), the first entry is
the payoff to the row player (shooter), the second entry the payoff to the column player (goalie). In
general, the payoff is (r, ¢) where r is the payoff to the row player, and ¢ the payoff to the column
player.

In this case, note that for each entry (r,c¢) in this matrix, the sum r + ¢ = 0. Such a game is called
a zero-sum game. The zero-sum-ness captures the fact that the game is “purely competitive”.
Note that being zero-sum does not mean that the game is “fair” in any sense—a game where the
payoff matrix has (1, —1) in all entries is also zero-sum, but is clearly unfair to the column player.

One more comment: for 2-player games, textbooks often define the row-payoff matrix R which
consists of the payoffs to the row player, and the column-payoff matriz C consisting of the payoffs
to the column player. The tuples in the payoff matrix M contain the same information, i.e.,

M;j = (Rij, Cij).

The game being zero-sum now means that R = —C, or R+ C = 0. In the example above, the
matrix R is

payoff goalie
matrix M L R
shooter L || —1 | 1
R 1 | -1

2Note carefully: we have defined things so that left and right are with respect to the shooter. From now on, when
we say the goalie dives left, it should be clear that the goalie is diving to the shooter’s left.



2.2 Pure and Mixed Strategies

Now given a game with payoff matrix M, the two players have to choose strategies, i.e., decide how
to play.

One strategy would be for the row player to decide on a row to play, and the column player to
decide on a column to play. Say the strategy for the row player was to play row I and the column
player’s strategy was to play column J, then the payoffs would be given by the tuple (R;;,Cry) in
location I, J:

payoff Ry; to the row player, and Cf; to the column player

In this case both players are playing deterministically. (E.g., the goalie decides to always go left,
etc.) A strategy that decides to play a single action is called a pure strategy.

But very often pure strategies are not what we play. We are trying to compete with the worst
adversary, and we may like to “hedge our bets”. Hence we may use a randomized algorithm:
e.g., the players dive/shoot left or right with some probability, or when playing the classic game
of Rock-Paper-Scissors the player choose one of the options with some probability. This means
the row player decides on a non-negative real p; for each row, such that ), p; = 1 (this gives a
probability distribution over the rows). Similarly, the column player decides on a ¢; > 0 for each
column, such that ), ¢; = 1. The probability distributions p,q are called the (mized-strategy)
mized strategies for the row (mixed-strategy) and column player, respectively. And then we look
at the expected payoff

Vr(p,q) := Z Prlrow player plays 4, column player plays j| - R;; = Zpiquij
ij ij

for the row player (where we used that the row and column player have independent randomness),
and

Vo(p,a) i= Y _ pig;Cij
ij

for the column player. This being a two-player zero-sum game, we know that Vz(p,q) = —Ve(p, q),
so we will just mention the payoff to one of the players (say the row player).

For instance, if p = (0.5,0.5) and q = (0.5,0.5) in the shooter-goalie game, then Vg = 0, whereas
p = (0.75,0.25) and q = (0.6,0.4) gives Vg = 0.45 — 0.55 = —0.1.

2.3 Minimax-Optimal Strategies

What does the row player want to do? She wants to find a vector p* that maximizes the expected
payoff to her, over all choices of the opponent’s strategy q. The mixed strategy that maximizes the
minimum payoff. L.e., the row player wants to find

Ib := max min Vg(p, q)
P a

Make sure you parse this correctly:

mixed strategy that maximizes the minimum expected payoff

Ib := max min Vz(p, q)
P q
—_————
payoff when opponent plays her optimal strategy against our choice p
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Loosely, the row player can guarantee to herself this much payoff no matter what the column player
does. The quantity Ib is a lower bound on the row-player’s payoff.

What about the column player? She wants to find some g* that maximizes her own expected
payoff, over all choices of the opponent’s strategy p. She wants to optimize

max min Vo (p, q)
a p

But this is a zero-sum game, so this is the same as

max min (—Vg(p,q))
a p

And pushing the negative sign through, we get the column player is trying to optimize her own
worst-case payoff, which is

—minmax Vg(p, q)
a p

So the payoff in this case to the row player is

ub := min max Vg (p, q)
a P

The column player can guarantee that the row player does mot get more than this much payoff, no
matter what the row-player does. This is an upper bound on the row player’s payoff.

We have two quantities: |b and ub. How do they compare? To figure this out, we first make a simple
but important observation: suppose we want to find the row player’s minimax-optimal strategy p*.
Then we can assume that the column player plays a pure strategy (a single column). Why? Once
the row player fixes a mixed strategy p, the column player then has no reason to randomize: her
payoffs will be some average of the payoffs from playing the individual columns, so she can just pick
the best column for her. In other words, we get that the quantity ub can be equivalently defined as

Ib:maxmjng pilRij.
P =

Similarly, the column player wants to optimize

ub = min max g qjRij = — maxmin g q;Cij.
q i - q i -
J J

2.3.1 The Balanced Game Example

For the shooter-goalie game, we claim that the minimax-optimal strategies for both players is
(0.5,0.5). How can we calculate this?

Row Player: For the row player (shooter), suppose p = (p1,p2) is the mixed strategy. Note that
p1 > 0,p2 > 0 and p; + p2 = 1. So it is easier to write the strategy as p = (p, 1 — p) with p € [0, 1].

OK. If the column player (goalie) plays L, then this strategy gets the shooter a payoff of
pr(-1)+(1—p)-(1)=1-2p.
If the column player (goalie) plays R, then this strategy gets the shooter a payoff of

p-(+(1-p)-(-1)=2p—1.
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So we want to choose some value p € [0, 1] to maximize
Ib = min(1 — 2p,2p — 1)

In this case, this maximum is achieved at p = 1/2. (One way to see it is by drawing these two lines.)
And the minimax-optimal expected payoff to the shooter is 0.

Column Player: The calculation for the column player (goalie) is very similar in this case. The
minimax-optimal strategy for the goalie is also (0.5,0.5) and the guarantees that the shooter cannot
make more than 0 payoff.

An observation: the shooter can guarantee a payoff of Ib = 0, and the goalie can guarantee that
the shooter’s payoff is never more than ub = 0. Since Ib = ub, in this case the “value of the game”
is said to be Ib = ub = 0.

2.3.2 The Asymmetric Goalie Example

Let’s change the game slightly. Suppose the goalie is weaker on the left. What happens if the
payoff matrix is now:

shooter L || (—
R (1,—-

Row Player: For the row player (shooter), suppose p = (p, 1 — p) is the mixed strategy, with p € [0, 1].
If the column player (goalie) plays L, then this strategy gets the shooter a payoff of

p-(=1/2)+ (1 —=p)- (1) =1-(3/2)p.
If the column player (goalie) plays R, then this strategy gets the shooter a payoff of
P+ (1-p) (-1 =21
So we want to choose some value p € [0, 1] to maximize
Ib = min(1 — (3/2)p,2p — 1)

In this case, this maximum is achieved at p = 4/7. And the minimax-optimal expected payoff to the
shooter is 1/7. Note that the goalie being weaker means the shooter’s payoff increases.

Column Player: What about the calculation for the column player (goalie)? If her strategy is q =
(¢,1 — q) with ¢ € [0,1], then if the shooter plays L then the shooter’s payoff is

q-(=1/2)+ (1 —-¢q)- (1) =1-(3/2)q.
If she plays R, then it is 2¢ — 1. So the goalie will try to minimize
ub = max(1 — (3/2)q,2q — 1)

which will again give (4/7,3/7) and guarantees that the expected loss is never more than 1/7.

Again, the shooter guarantees a payoff of Ib = 1/7, and the goalie can guarantee that the shooter’s
payoff is never more than ub = 1/7. In this case the value of the game is said to be Ib = ub = 1/7.

Exercise 1: What if both players have somewhat different weaknesses? What if the payoffs are:

(-1/2, 1/2) (3/4, -3/4)
1, -0 (-3/2, 3/2)



Show that minimax-optimal strategies are p = (2/3,1/3),q = (3/5,2/5) and value of game is 0.

Exercise 2: For the game with payoffs:

(-1/2, 1/2) (3/4, -3/4)
1, -1 (-2/3, 2/3)

Show that minimax-optimal strategies are p = (%, %), q = (2%, £8) and value of game is %

Exercise 3: For the game with payoffs:

(-1/2, 1/2) (-1,
1, -1 (273, -2/3)

Show that minimax-optimal strategies are p = (0,1),q = (0, 1) and value of game is %

3 Von Neumann’s Minimax Theorem

In all the above examples of 2-player zero-sum games, we saw that the row player has a strategy
p* that guarantees some payoff Ib for her, no matter what strategy q the column player plays. And
the column player has a strategy q* that guarantees that the row player cannot get payoff more
than ub, no matter what strategy p the row player plays. The remarkable fact in the examples
was that |b = ub in all these cases! Was this just a coincidence? No: a celebrated result of von
Neumamﬁ shows that we always have Ib = ub in (finite) 2-player zero-sum games.

Theorem 1 (Minimax Theorem (von Neumann, 1928)) Given a finite 2-player zero-sum game
with payoff matrices R = —C,

Ib = max min Vi(p,q) = minmax Vz(p,q) = ub.
P q a p

This common value is called the value of the game.

The theorem implies that in a zero-sum game, both the row and column players can even “publish”
their minimax-optimal mixed strategies (i.e., tell the strategy to the other player), and it does not
hurt their expected performance as long as they play optimallyﬁ

Von Neumann’s Minimax Theorem is an important result in game theory, but it has beautiful
implications to computer science as well — as we see in the next section.

4 Lower Bounds for Randomized Algorithms

In order to prove lower bounds, we thought of us coming up with algorithms, and the adversary
coming with some inputs on which our algorithm would perform poorly—take a long time, or make
many comparisons, etc. We can encode this as a zero-sum game with row-player payoff matrix R.
(Keep sorting as an example application in your mind.)

e The columns are various algorithms for the problem (for sorting n elements).

3John von Neumann, mathematician, physicist, and polymath.

Tt’s like telling your rock-paper-scissors opponent that you will play each action with equal probability, it does
not buy them anything to know your strategy. This is not true in general non-zero-sum games; there if you tell your
opponent the mixed-strategy you’re playing, she may be able to do better. Note carefully that you are not telling
them the actual random choice you will make, just the distribution from which you will choose.
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e The rows are all the possible inputs (all n! of them).

e The entry R;; is the cost of the algorithm j on the input i (say the number of comparisons).

This may be a huge matrix, but we’ll never write it down. It’s just a conceptual guide. But what
does the matrix tell us? A lot, as it turns out:

e A deterministic algorithm with good worst-case guarantee is a column that does well against
all rows: all entries in this column are small.

e A randomized algorithm with good expected guarantee is a probability distribution q over
columns, such that the expected cost for each row 7 is small. This is a mixed strategy for the
column player. It gives an upper bound.

e Ideally we want to find the minimax-optimal distribution q* achieving the value of this game.
This would be the best randomized algorithm.

e What is a lower bound for randomized algorithms? It is a mixed-strategy over rows (a
probability distribution p over the inputs) such that for every column (i.e., deterministic
algorithm j), the expected cost of j (under distribution p) is high.

So to prove a lower bound for randomized algorithms, if suffices to show that Ib is high
for this game. I.e., give a strategy for the row player (a distribution over inputs) such
that every column (deterministic algorithm) incurs a high cost on it.

4.1 A Lower Bound for Sorting Algorithms

Recall from Lecture #2 we showed that any deterministic comparison-based sorting algorithm must
perform logy n! = nlgn—O(n) comparisons in the worst case. The next theorem extends this result
to randomized algorithms.

Theorem 2 Let A be any randomized comparison-based sorting algorithm (that always outputs the
correct answer). Then there exist inputs on which A performs Q(lgn!) comparisons in expectation.

Proof: Suppose we construct a matrix R as above, where the columns are possible (deterministic)
sorting algorithms for n elements, the rows are the n! possible inputs, and entry R;; is the number
of comparisons algorithm j makes on input i. We claim that the value of this game is Q(lgn!): this
implies that the best distribution over columns (i.e., the best randomized algorithm) must suffer
at least this much cost on some column (i.e., input).

To show the value of the game is large, we show a probability distribution over the rows (i.e.,
inputs) such that the expected cost of every column (i.e., every deterministic algorithm) is Q(Ign!).

This probability distribution is the uniform distribution: each of the n! inputs is equally likely.
Now consider any deterministic algorithm: as in Lecture #2, this is a decision tree with at least n!
leaves. No two inputs go to the same leaf.

In this tree, how many leaves can have depth at most (Ign!) — 10?7 At most the number of nodes
at depth at most (Ign!) — 10 in a complete binary tree. Which in turn is

1+24+4+8+... +208m)-10 < 4244484+ 2 < 2

So % > 0.99 fraction of the leaves in this tree have depth more than (Ign!) — 10. In other words,

if we pick a random input, it will lead to a leaf at depth more than (Ign!) — 10 with probability
0.99. Which gives the expected depth of a random input to be > 0.99((Ign!) — 10) = Q(lgn!). W
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5 General-Sum Two-Player Games*

In general-sum games, we don’t deal with purely competitive situations, but cases where there are
win-win and lose-lose situations as well. For instance, the coordination game of “chicken”, a.k.a.
what side of the street to drive on? It has the payoff matrix:

payoff Bob
matrix M L ‘ R
Alice L (1,1) (—1,-1)
R| (-1,-1)| (1,1

Note that we are now using the convention that a player choosing L is driving on their left. Note
that if both players choose the same side, then both win. And if they choose opposite sides, both
crash and lose. (Both players can choose to drive on the left—like Britain, India, etc.—or both on
the right, like the rest of the world, but they must coordinate. Both these are stable solutions and
give a payoff of 1 to both parties.)

Consider another coordination game that we call “which movie?” Two friends are deciding what
to do in the evening. One wants to see Citizen Kane, and the other Dumb and Dumber. They’d
rather go to a movie together than separately (so the strategy profiles C, D and D, C have payoffs
zero to both), but C, C has payoffs (8,2) and D, D has payoffs (2, 8).

payoff Bob
matrix M C ‘ D
Alice C || (8,2) | (0,0)
D | (0,0) | (2,8)

Finally, yet another game is “Prisoner’s Dilemma” (or “to pollute or not?”) with the payoff matrix:

payoff Bob
matrix M | collude ‘ defect
Alice collude || (2,2) | (—1,3)
defect | (3,—1) | (0,0)

5.1 Nash Equilibria

In this case, a good notion is to look for a Nash Equilz’bm’umﬂ which is a stable set of (mixed)
strategies for the players. Stable here means that given strategies (p,q), neither player has any
incentive to unilaterally switch to a different strategy. I.e., for any other mixed strategy p’ for the
row player

row player’s new payoff = Z p;quij < Z piq;R;j = row player’s old payoff
ij ij

®Named after John Nash: mathematician and Nobel prize winner.
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and for any other possible mixed strategy q’ for the column player

column player’s new payoff = Zpiq;CZ-j < ZpiqjCl-j = column player’s old payoff.
ij ij

Here are some examples of Nash equilibria:

e In the chicken game, both {p = (1,0),q = (1,0)} and {p = (0,1),q = (0,1)} are Nash
equilibria, as is {p = (%, %),q = (%, %)}

e In the movie game, the only Nash equilibria are {p = (1,0),q = (1,0)} and {p = (0,1),q =
(0,1)}.

e In prisoner’s dilemma, the only Nash equilibrium is to defect (or pollute). So we need extra
incentives for overall good behavior.

It is easy to come up with games where there are no stable pure strategies—this is even true for
zero-sum games. But what about mixed-strategies? The main result in this area was proved by
Nash in 1950 (which led to his name being attached to this concept)

Theorem 3 (Existence of Stable Strategies) FEvery finite player game (with each player hav-
ing a finite number of strategies) has at least one (mized-strategy) Nash equilibrium.

This theorem implies the Minimax Theorem (Theorem (1)) as a corollary: indeed, take any two-
player zero-sum game and consider any Nash equilibrium (p,q), with value V' = Zij piqjRij =
—sz piqjCi;. Since this is stable, neither player can do better by deviating, even knowing the
other player’s strategy. So they must be playing minimax-optimal.
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