
15-451 Algorithms, Fall 2011

Homework # 7 due: Thurs December 8, 2011

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each sheet. You will be handing each problem into a separate box,
and we will then give homeworks back in recitation. Remember: written homeworks are to
be done individually. Group work is only for the oral-presentation assignments.

Problems:

(25 pts) 1. [NP-completeness and approximation algorithms]

Let A be the set of pairs (G, k) such that G is a graph with a vertex cover of size k or
less. Let C be the set of pairs (G, k) such that G has a vertex cover of size k/2 or less.
Notice that A ⊇ C because if (G, k) ∈ C then clearly (G, k) ∈ A also.

Determining whether a given input (G, k) belongs to A is NP-Complete (this is the
Vertex-Cover problem), and also determining whether a given input (G, k) belongs to
C is NP-complete (since this is really the same problem).

Describe a set B such that A ⊇ B ⊇ C but membership in B can be decided in poly-
nomial time (and explain why membership in B can be decided in polynomial time).
So this is just like the situation on Mini 5. Hint: think approximation algorithms.

(25 pts) 2. Randomized Rent-or-Buy

Consider the rent-or-buy problem in the simple case that the cost to buy skis is twice
the rental cost. The optimal deterministic algorithm (as discussed in class) is: “rent
once, then buy” for a competitive ratio of 3/2. In this problem we will consider
randomized algorithms. For a randomized algorithm, the definition of competitive
ratio is maxσ E[alg cost(σ)]/OPT (σ), where “σ” is the number of times we go skiing.

We can think of competitive analysis as a 2-player game: we pick a strategy, the
adversary picks how many times σ we go skiing, and then we are charged the above
ratio. It turns out that if the purchase cost is twice the rental cost, there are only two
choices for the adversary that we need to worry about: σ = 1 or σ = ∞. Because of
this, there are only two deterministic strategies that make sense for us to randomize
over: either (1) buy right away, or (2) rent once and then buy if we go skiing again.

(a) Draw out a matrix corresponding to this game. The matrix should have two rows
(one for “buy right away” and one for “rent once then buy”) and two columns
(one for “σ = 1” and once for “σ = ∞”). The cells in the matrix should give the
competitive ratio of that algorithm in that event.

(b) The minimax optimal strategy for the row player in this matrix game gives the
randomized algorithm with the best competitive ratio. What is that strategy,
and what is the minimax value of the game (the optimal randomized competitive
ratio)?



(c) To complete the argument, prove the two assertions made above that allowed us
to reduce the problem to the 2-by-2 case. Specifically,

i. Show that we only need to consider σ = 1 and σ = ∞ by arguing why for
any randomized algorithm A, and any σ > 1, we have E[A(σ)]/OPT (σ) ≤

E[A(σ + 1)]/OPT (σ + 1).

ii. Assuming now that either σ = 1 or σ = ∞, argue why the optimal randomized
algorithm would put zero probability on the deterministic strategy “rent i
times then buy” for any i > 1.

(25 pts) 3. [Random-access1 long division].

Give a polynomial time algorithm to find the Nth digit of the fraction A/B, where A,
B and N are all given in binary.

Input: integers (A, B, N) in binary notation, where A < B.

Let 0.d1d2d3 · · · be the decimal expansion of the fraction A

B
.

Output: dN .

Note: the key thing here is that your algorithm’s running time should be polynomial
in log N (and log A and log B). The standard way of doing long division would instead
be polynomial in N . In particular, the standard long division would look like this:

for i = 1 to N do:
di = 10A div B;
A = 10A mod B;

where “div” is integer division.

(25 pts) 4. FFT

Consider the following problem. You are given a string P of 1’s and ∗’s (the “pattern”),
and a string T of 0’s and 1’s (the “text”). Your job is to find all places where the pattern
P appears in text T , where a star can match either a 0 or a 1. For instance, if P =
11∗1 and T = 10111101, then P appears twice in T : once starting at the 3rd position
in T and once starting at the 5th position in T .

Say P has length n and T has length m, where m > n. There is a simple O(mn)-time
algorithm to solve this problem: try all O(m) possible starting positions, and for each
one, check in time O(n) to see if P matches there.

Show how you can use the FFT to solve this problem in time only O(m log m).

[Hint: you may wish to reverse P . Note: you do not need to explain the inner workings
of the FFT algorithm.]

1“Random access” as in random-access memory, i.e., as opposed to sequential-access. Not “random” as

in probability.
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