15-451 Algorithms, Fall 2010

Bounds on Randomized Algorithms

Say we have 3 possible deterministic algorithms A, B and C and 3 possible inputs I, J and
K for a problem. Let the cost matrix for these algorithms and inputs be as follows.

‘ I J K
Ala aj ay
B |b b b
Cla ¢

1 Deterministic Bounds on the Worst-Case Cost

It is important to note that the worst-case cost of any algorithm (for e.g. max(a;, a;, ay) for
algorithm A) is definitely an upper bound.

To find a tighter upper bound for the worst-case cost, we simply find the maximum of each
row (the worst-case cost of each algorithm) and take the minimum of these maximum values
(this cost is sufficient to solve the problem for any input). Note that this upper bound
is also optimal as we have explored all possible algorithms and the worst-case cost of any
other algorithm is at least this much. (In other words, we have given an algorithm whose
worst-case cost is equal to the optimal upper bound.)

But, in general, enumerating all possible algorithms for a problem might not be feasible and
hence, an upper bound (may not be the optimal) is usually given by providing an algorithm
and its worst-case cost is taken as an upper bound.

Analogously, the least time taken for any input (minimum of any column in the cost matrix)
is definitely a lower bound because every algorithm costs at least this much.

Then, it is important to see that the optimal upper bound on the worst-case cost we have
seen above is also a lower bound. The reason is the same — we have explored all possible
algorithms and every algorithm costs at least this much in the worst-case, implying a lower
bound. Again, this is also the optimal lower bound. As this particular algorithm’s worst-case
is both the optimal upper and lower bound, this algorithm is called optimal.

We can find a lower bound in a different way (need not be optimal). We find the minimum of
each column (every algorithm costs at least this much for that input) and take the maximum
of these minimum values (every algorithm costs at least this much for the worst input).

Again, in general, enumerating all possible inputs for a problem might not be feasible and
hence, a lower bound is usually found by giving an adversary algorithm which creates a
bad-enough input for each algorithm and take the minimum of all the corresponding costs as
a lower bound (need not be the optimal).

2 Bounds for Randomized Algorithms

Let us now think about randomized algorithms. A randomized algorithm can be seen as a
discrete probability distribution on the 3 deterministic algorithms. And in general, inputs
can come from another discrete probability distribution.



Let p,, p» and p. denote the probabilities with which the 3 algorithms are chosen and let p;, p;
and py denote the probabilities with which the 3 inputs are chosen. Note that p,+p,+p. = 1
and p; +p; +pr = 1.

2.1 Upper Bound

Let us see how to compute the optimal upper bound on the worst-case expected cost for
all possible randomized algorithms (i.e. all possible values of p,, p, and p.). It is similar to
the deterministic case where we find the worst-case cost of all possible algorithms and take
the minimum. Given a randomized algorithm, i.e. given specific values of p,, py and p., the
worst-case expected cost would be the maximum of the expected costs for all possible input
distributions. Now, given an input distribution, i.e. given specific values of p;, p; and py,
the expected cost can be written as

Di(Dati + pobi + peci) + pj(Daaj + Pobj + pec;) + Pr(Patr + Pobr + peci) (1)

where the expressions in the brackets denote the expected cost of that particular input for
the randomized algorithm. Note that the maximum of (1) is nothing but the maximum of
the expected costs for the inputs I, J and K (in other words, we need to consider only 3 of
the input distributions where only one of p;, p; and p; is 1; this is sufficient because every
other input distribution is only going to make the expected cost smaller if not the same).
Thus, given a randomized algorithm, the worst-case expected cost is

max(paai + pobi + PeCi, Patj + Pobj + PeCiy Par + Pobi + PeCi)

It is important to note that, the value of the above expression is definitely an upper bound,
but not necessarily the optimal. This is again useful in the general case where we cannot
enumerate all possible randomized algorithms for a problem and we still need an upper
bound — we can come up with one randomized algorithm and take its worst-case cost as an
upper bound.

Now, the optimal upper bound (of the worst-case expected cost) over all possible randomized
algorithms is just the minimum of the above, i.e.

min(max(pea; + pebi + DeCis Patj + Pobj + DeCi, Path + Dobi + Peci))

In other words, our objective now is to find the randomized algorithm whose distribution
matches with the above minimum. Once we find the values of p,, p, and p. which satisfies
the above minimax condition, we can compute the optimal upper bound.

2.2 Lower Bound

By the minimax theorem (which will be covered in the class in future) the optimal lower
bound is equal to the optimal upper bound we found in the previous section. Nevertheless,
we describe how to compute the optimal lower bound independently.

It is similar to the deterministic case where we find the lower bounds for all possible inputs
and take the maximum. Given an input distribution, i.e. given specific values of p;, p; and
pr, the lower bound for all randomized algorithms is the minimum of the expected costs of



all randomized algorithms. Now, given a randomized algorithm, i.e. given specific values of
Pa, Db and p., the expected cost can be written as

Pa(Pia; + pja; + prax) + po(pibi + pib; + prbr) + pe(pici + picj + prcr) (2)

(Note that this is the same expression as in (1) above.) where the expressions in the brackets
denote the expected costs of each deterministic algorithm for the input distribution. The
minimum of the above expression is nothing but the minimum of these expected costs of
the deterministic algorithms (in other words, we need to consider only 3 of the distributions
where only one of p,, p, and p,. is 1; this is sufficient because every other distribution on
the deterministic algorithms is going to make the expected cost larger if not the same).
Thus, given an input distribution, the lower bound on the expected cost for all randomized
algorithms is

min(p;a; + pja; + prak, pib; + pjb; + Prbr, pici + Djc; + Drck)

It is important to note that the value of the above expression is definitely a lower bound,
but not necessarily the optimal. This is again useful in the general case where we cannot
enumerate all possible input distributions for a problem and we still need to talk about a
lower bound.

Now, the optimal lower bound for the worst-case input distribution, for all randomized
algorithms is the maximum of all these lower bounds :

max(min(p;a; + pja; + prag, pibi + p;jb; + prbr, pici + pic; + Prck))

In other words, our objective now is to find the input distribution which matches with the
above maximum. Once we find the values of p;, p; and p; which satisfies the above minimax
condition, we can compute the lower bound.

Last but not the least, someone asked during the recitation if we can take the maximum
of the minimum expected cost of any input, given the values of p,, p, and p. as the lower
bound. The truth is that it is definitely a lower bound, but need not be the optimal. Here is
a reasoning. If we rephrase what’s been suggested, we are first finding the expected best-case
cost (minimum expected cost) for a given randomized algorithm (we know p,, pp and p.).
If we take the maximum of all these best-case costs, what we get is how bad the expected
best-case cost of any randomized algorithm can be which is definitely not a tight lower bound
on the expected worst-case cost (the former is always smaller than or equal to the latter)!



