Proofs for the assumptions we made in the recitation problem.

The game matrix looks like this (problem statement is in the recitation note):

	search 1	search 2	search 3	
p_1	3	1	2	balanced tree
p_2	1	3	2	zag-zig
p_3	2	3	1	zig-zag
p_4	1	2	3	zag-zag
p_5	3	2	1	zig-zig

Let $P = \{p_1, p_2, p_3, p_4, p_5\}$ be a randomized strategy. $(0 \le p_i \le 1 \text{ and } \sum p_i = 1)$

Claim 1: We can safely assume that the optimal strategy have $p_2 = p_3$ and $p_4 = p_5$.

We will prove the claim by proving more general statement that implies Claim 1.

More general statement: For any randomized strategy $P = \{p_1, p_2, p_3, p_4, p_5\}$, we can create a better (or equally good) strategy by having $P' = \{p'_1, p'_2, p'_3, p'_4, p'_5\}$ where $p'_1 = p_1$, $p_2' = p_3' = (p_2 + p_3)/2$ and $p_4' = p_5' = (p_4 + p_5)/2$.

Proof:

First note that P' is an valid strategy because $0 \le p'_i \le 1$ and $\sum p'_i = \sum p_i = 1$.

Let E_1 , E_2 and E_3 be the expected cost of strategy P if input is 1,2 and 3 repectively. Then,

$$E_1 = 2p_1 + p_2 + 2p_3 + p_4 + 3p_5$$

$$E_2 = p_1 + 3p_2 + 3p_3 + 2p_4 + 2p_5$$

$$E_3 = 2p_1 + 2p_2 + p_3 + 3p_4 + p_5$$

Then the expected worst case cost for strategy P is $MAX(E_1, E_2, E_3)$

Similarly, let E'_1 , E'_2 and E'_3 be the expected cost of strategy P' if input is 1,2 and 3 repectively. Then,

$$E'_1 = 2p'_1 + p'_2 + 2p'_3 + p'_4 + 3p'_5 = 2p_1 + 3/2(p_2 + p_3) + 2(p_4 + p_5)$$

$$E_0' = n_1' + 3n_2' + 3n_2' + 2n_4' + 2n_5' = n_1 + 3n_2 + 3n_2 + 2n_4 + 2n_5 = E_2$$

$$E'_{2} = p'_{1} + 3p'_{2} + 3p'_{3} + 2p'_{4} + 2p'_{5} = p_{1} + 3p_{2} + 3p_{3} + 2p_{4} + 2p_{5} = E_{2}$$

$$E'_{3} = 2p'_{1} + 2p'_{2} + p'_{3} + 3p'_{4} + p'_{5} = 2p_{1} + 3/2(p_{2} + p_{3}) + 2(p_{4} + p_{5}) = E'_{1}$$

Then the expected worst case cost for strategy P' is $MAX(E'_1, E'_2, E'_3)$

We want to show $MAX(E'_1, E'_2, E'_3) \leq MAX(E_1, E_2, E_3)$

Case 1: $MAX(E_1, E_2, E_3) = E_1$

That means $E_1 - E_3 \ge 0 = > -p_2 + p_3 - 2p_4 + 2p_5 \ge 0$.

Consider $E_1 - E_1' = -1/2p_2 + 1/2p_3 - p_4 + p_5 = 1/2(E_1 - E_3) \ge 0$ Thus $E_1 \ge E_1'$. We know $E_2' = E_2 \le E_1$ and $E_3' = E_1' \le E_1$. All E_1' , E_2' and $E_3' \le E_1 = MAX(E_1, E_2, E_3)$. Thus $MAX(E'_1, E'_2, E'_3) \leq MAX(E_1, E_2, E_3)$

Case 2: $MAX(E_1, E_2, E_3) = E_2$

That means $E_2 - E_1 = -p_1 + 2p_2 + p_3 + p_4 - p_5 \ge 0$ and $E_2 - E_3 = -p_1 + p_2 + 2p_3 - p_4 + p_5 \ge 0$.

Then
$$(E_2 - E_1) + (E_2 - E_3) = -2p_1 + 3p_2 + 3p_3 \ge 0$$
.

Consider
$$E'_2 - E'_1 = -p_1 + 3/2p_2 + 3/2p_3 = ((E_2 - E_1) + (E_2 - E_3))/2 \ge 0.$$

Thus
$$E'_2 \ge E'_1 = E'_3 => MAX(E'_1, E'_2, E'_3) = E'_2 = E_2 = MAX(E_1, E_2, E_3).$$

Case 3: $MAX(E_1, E_2, E_3) = E_3$

Analogous with Case 1: $MAX(E'_1, E'_2, E'_3) \leq MAX(E_1, E_2, E_3)$

In all cases, we have $MAX(E_1, E_2, E_3) \leq MAX(E_1, E_2, E_3)$

eseo@andrew.cmu.edu

Claim 2: We can safely assume that the optimal strategy have $p_4 = p_5 = 0$ (Do not need to use zag-zag and zig-zig trees).

Proof:

Let $P = \{p_1, p_2, p_3, p_4, p_5\}$ is an optimal strategy. By Claim 1, we can assume $p_2 = p_3$ and $p_4 = p_5$. Let $q_1 = p_1$, $q_{23} = p_2 = p_3$, $q_{45} = p_4 = p_5$. Then $(q_1 + 2q_{23} + 2q_{45} = 1)$

Let E_1 , E_2 and E_3 be the expected cost of strategy P if input is 1,2 and 3 repectively. Then,

$$E_1 = 2p_1 + p_2 + 2p_3 + p_4 + 3p_5 = 2q_1 + 3q_{23} + 4q_{45}$$

$$E_2 = p_1 + 3p_2 + 3p_3 + 2p_4 + 2p_5 = q_1 + 6q_{23} + 4q_{45}$$

$$E_3 = 2p_1 + 2p_2 + p_3 + 3p_4 + p_5 = 2q_1 + 3q_{23} + 4q_{45}$$

Consider a new strategy $P' = \{p'_1, p'_2, p'_3, p'_4, p'_5\}$ where $p'_1 = p_1 + p_4 + p_5 = q_1 + 2q_{45}, p'_2 = p'_3 = p_2 = p_3 = q_{23}$ and $p'_4 = p'_5 = 0$. It is a vaild strategy as $0 \le p'_i \le 1$ and $\sum p'_i = \sum p_i = 1$. Then the expected costs for P' is

$$\begin{split} E_1' &= 2p_1' + p_2' + 2p_3' = 2q_1 + 4q_{45} + 3q_{23} \\ E_2' &= p_1' + 3p_2' + 3p_3' = q_1 + 2q_{45} + 6q_{23} \\ E_3' &= 2p_1' + 2p_2' + p_3' = 2q_1 + 4q_{45} + 3q_{23} \\ \text{Clearly, } E_1' &= E_1, \ E_2' \leq E_2 \ \text{and} \ E_3' = E_3. \\ \text{Thus } MAX(E_1', E_2', E_3') \leq MAX(E_1, E_2, E_3). \end{split}$$

So we created a better (or equally good) strategy that does not use zag-zag and zig-zig trees at all.