15-451 Algorithms
Lectures 11-20

Avrim Blum
Department of Computer Science
Carnegie Mellon University

September 29, 2009

Contents

11 Dynamic Programming
11.1 Overview

11.2 Introduction.

11.3 Example 1: Longest Common Subsequence

11.4 More on the basic idea, and Example 1 revisited

11.5 Example #2: The Knapsack Problem

11.6 Example #3: Matrix product parenthesization

11.7 High-level discussion of Dynamic Programming

12 Graph Algorithms I
12.1 Overview

12.2 Introduction

12.3 Topological sorting and Depth-first Search,

12.4 Shortest Paths

12.4.1 The Bellman-Ford Algorithm

12.5 All-pairs Shortest Paths .

12.5.1 All-pairs Shortest Paths via Matrix Products
12.5.2 All-pairs shortest paths via Floyd-Warshall

13 Graph Algorithms II

13.1 Overview

13.2 Shortest paths revisited: Dijkstra’s algorithm

13.3 Maximum-bottleneck path
13.4 Minimum Spanning Trees
13.4.1 Prim’s algorithm .
13.4.2 Kruskal’s algorithm

14 Midterm

59
99
99
60
61
62
63
65

66
66
66
67
68
69
70
70
70

72
72
72
74
74
75
76

78

CONTENTS

15 Graph Algorithms III: Union-Find
15.1 Overview e e
15.2 Motivation oL L
15.3 The Union-Find Problem o
15.4 Data Structure 1 (list-based) L o
15.5 Data Structure 2 (tree-based) L

16 Network Flow I
16.1 OVerview o o o e e e
16.2 The Network Flow Problem,
16.3 The Ford-Fulkerson algorithm
16.4 Bipartite Matching

17 Network Flow II
17.1 OVerview o oo e e e e e
17.2 Network flow recap e
17.3 Edmonds-Karp #1 e e
17.4 Edmonds-Karp #2 e
17.5 Further discussion: Dinic and MPM 0oL
17.6 Min-cost Matchings, Min-cost Max Flows

18 Linear Programming
181 OVerview o e
18.2 Introductiono
18.3 Definition of Linear Programming L.
18.4 Modeling problems as Linear Programs
18.5 Modeling Network Flow
18.6 2-Player Zero-Sum Games e

18.7 Algorithms for Linear Programming

19 NP-Completeness I
19.1 OVerview o o e e e e
19.2 Introduction: Reduction and Expressiveness
19.3 Our first NP-Complete Problem: ESP
19.4 Search versus Decision
19.5 Formal definitions: P, NP, and NP-Completeness
19.6 Circuit-SAT and 3-SAT e

ii

79
79
79
79
80
81

84
84
84
86
88

90
90
90
91
92
93
94

95
95
95
96
97
98
98
100

CONTENTS iii

20 NP-Completeness 11 108
20.1 OVEIVIEW . . . o v o o e e e e e e e e e 108
20.2 Introduction L 108
20.3 CLIQUE e 110
20.4 Independent Set and Vertex Cover 111
20.5 Beyond NP e 112

20.6 NP-Completeness summary o v v v vt e e e 112

Lecture 11

Dynamic Programming

11.1 Overview

Dynamic Programming is a powerful technique that allows one to solve many different types of
problems in time O(n?) or O(n?) for which a naive approach would take exponential time. In this
lecture, we discuss this technique, and present a few key examples. Topics in this lecture include:

e The basic idea of Dynamic Programming.
e Example: Longest Common Subsequence.
e Example: Knapsack.

e Example: Matrix-chain multiplication.

11.2 Introduction

Dynamic Programming is a powerful technique that can be used to solve many problems in time
O(n?) or O(n?) for which a naive approach would take exponential time. (Usually to get running
time below that—if it is possible—one would need to add other ideas as well.) Dynamic Pro-
gramming is a general approach to solving problems, much like “divide-and-conquer” is a general
method, except that unlike divide-and-conquer, the subproblems will typically overlap. This lecture
we will present two ways of thinking about Dynamic Programming as well as a few examples.

There are several ways of thinking about the basic idea.

Basic Idea (version 1): What we want to do is take our problem and somehow break it down into
a reasonable number of subproblems (where “reasonable” might be something like n?) in such a way
that we can use optimal solutions to the smaller subproblems to give us optimal solutions to the
larger ones. Unlike divide-and-conquer (as in mergesort or quicksort) it is OK if our subproblems
overlap, so long as there are not too many of them.

99

11.3. EXAMPLE 1: LONGEST COMMON SUBSEQUENCE 60

11.3 Example 1: Longest Common Subsequence

Definition 11.1 The Longest Common Subsequence (LCS) problem is as follows. We are
given two strings: string S of length n, and string T of length m. Qur goal is to produce their
longest common subsequence: the longest sequence of characters that appear left-to-right (but not
necessarily in a contiguous block) in both strings.

For example, consider:

S = ABAZDC
T = BACBAD

In this case, the LCS has length 4 and is the string ABAD. Another way to look at it is we are finding
a 1-1 matching between some of the letters in S and some of the letters in 7" such that none of the
edges in the matching cross each other.

For instance, this type of problem comes up all the time in genomics: given two DNA fragments,
the LCS gives information about what they have in common and the best way to line them up.

Let’s now solve the LCS problem using Dynamic Programming. As subproblems we will look at
the LCS of a prefix of S and a prefix of T, running over all pairs of prefixes. For simplicity, let’s
worry first about finding the length of the LCS and then we can modify the algorithm to produce
the actual sequence itself.

So, here is the question: say LCS[i,j] is the length of the LCS of S[1..i] with T'[1..j]. How
can we solve for LCS[1i, j] in terms of the LCS’s of the smaller problems?

Case 1: what if S[i] # T'[j]? Then, the desired subsequence has to ignore one of S[i] or T[j] so
we have:
LCS[4, j] = max(LCS[i — 1, j],LCS[4, § — 1]).

Case 2: what if S[i] = T[j]? Then the LCS of S[1..7] and T[1..j] might as well match them up.
For instance, if I gave you a common subsequence that matched S[i] to an earlier location in
T, for instance, you could always match it to T'[j] instead. So, in this case we have:

LCS[i,j] =1+ LCS[i — 1, —1].
So, we can just do two loops (over values of i and j) , filling in the LCS using these rules. Here’s

what it looks like pictorially for the example above, with S along the leftmost column and 7" along
the top row.

O N> W >
R P P~ Ol
N NN ==
N NN - P Q
N NNDN =T
W W wwN ~»>=
D wWwwN o

c|1 2 3 3 4

We just fill out this matrix row by row, doing constant amount of work per entry, so this takes
O(mn) time overall. The final answer (the length of the LCS of S and T') is in the lower-right
corner.

11.4. MORE ON THE BASIC IDEA, AND EXAMPLE 1 REVISITED 61

How can we now find the sequence? To find the sequence, we just walk backwards through
matrix starting the lower-right corner. If either the cell directly above or directly to the right
contains a value equal to the value in the current cell, then move to that cell (if both to, then chose
either one). If both such cells have values strictly less than the value in the current cell, then move
diagonally up-left (this corresponts to applying Case 2), and output the associated character. This
will output the characters in the LCS in reverse order. For instance, running on the matrix above,
this outputs DABA.

11.4 More on the basic idea, and Example 1 revisited

We have been looking at what is called “bottom-up Dynamic Programming”. Here is another way
of thinking about Dynamic Programming, that also leads to basically the same algorithm, but
viewed from the other direction. Sometimes this is called “top-down Dynamic Programming”.

Basic Idea (version 2): Suppose you have a recursive algorithm for some problem that gives you
a really bad recurrence like T'(n) = 27'(n — 1) +n. However, suppose that many of the subproblems
you reach as you go down the recursion tree are the same. Then you can hope to get a big savings
if you store your computations so that you only compute each different subproblem once. You can
store these solutions in an array or hash table. This view of Dynamic Programming is often called
Memoizing.

For example, for the LCS problem, using our analysis we had at the beginning we might have
produced the following exponential-time recursive program (arrays start at 1):

LCS(S,n,T,m)
{
if (n==0 || m==0) return 0;
if (S[n] == T[m]) result = 1 + LCS(S,n-1,T,m-1); // no harm in matching up
else result = max(LCS(S,n-1,T,m), LCS(S,n,T,m-1));
return result;

This algorithm runs in exponential time. In fact, if S and T use completely disjoint sets of characters
(so that we never have S[n]==T[m]) then the number of times that LCS(S,1,T,1) is recursively
called equals (”:{f;z)l In the memoized version, we store results in a matrix so that any given
set of arguments to LCS only produces new work (new recursive calls) once. The memoized version

begins by initializing arr[i] [j] to unknown for all i, j, and then proceeds as follows:

LCS(S,n,T,m)
{
if (n==0 || m==0) return O;
if (arr[n] [m] '= unknown) return arr[n][m]; // <- added this line (x*)

if (S[n] == T[m]) result = 1 + LCS(S,n-1,T,m-1);
else result = max(LCS(S,n-1,T,m), LCS(S,n,T,m-1));
arr[n] [m] = result; // <- and this line (*x)

LThis is the number of different “monotone walks” between the upper-left and lower-right corners of an n by m
grid.

11.5. EXAMPLE #?2: THE KNAPSACK PROBLEM 62

return result;

}

All we have done is saved our work in line (**) and made sure that we only embark on new recursive
calls if we haven’t already computed the answer in line (*).

In this memoized version, our running time is now just O(mn). One easy way to see this is as
follows. First, notice that we reach line (**) at most mn times (at most once for any given value
of the parameters). This means we make at most 2mn recursive calls total (at most two calls for
each time we reach that line). Any given call of LCS involves only O(1) work (performing some
equality checks and taking a max or adding 1), so overall the total running time is O(mn).

Comparing bottom-up and top-down dynamic programming, both do almost the same work. The
top-down (memoized) version pays a penalty in recursion overhead, but can potentially be faster
than the bottom-up version in situations where some of the subproblems never get examined at
all. These differences, however, are minor: you should use whichever version is easiest and most
intuitive for you for the given problem at hand.

More about LCS: Discussion and Extensions. An equivalent problem to LCS is the “mini-
mum edit distance” problem, where the legal operations are insert and delete. (E.g., the unix “diff”
command, where S and T are files, and the elements of S and 7" are lines of text). The minimum
edit distance to transform S into 7" is achieved by doing |S| —LCS(S,T) deletes and |T'| —LCS(S,T")
inserts.

In computational biology applications, often one has a more general notion of sequence alignment.
Many of these different problems all allow for basically the same kind of Dynamic Programming
solution.

11.5 Example #2: The Knapsack Problem

Imagine you have a homework assignment with different parts labeled A through G. Each part has
a “value” (in points) and a “size” (time in hours to complete). For example, say the values and
times for our assignment are:

/A B C D EF G
value | 7 9 5 12 14 6 12
time | 3 4 2 6 7T 3 5

Say you have a total of 15 hours: which parts should you do? If there was partial credit that was
proportional to the amount of work done (e.g., one hour spent on problem C earns you 2.5 points)
then the best approach is to work on problems in order of points/hour (a greedy strategy). But,
what if there is no partial credit? In that case, which parts should you do, and what is the best
total value possible??

The above is an instance of the knapsack problem, formally defined as follows:

2Answer: In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. Notice that this
doesn’t include doing part C which has the most points/hour!

11.6. EXAMPLE #3: MATRIX PRODUCT PARENTHESIZATION 63

Definition 11.2 In the knapsack problem we are given a set of n items, where each item i is
specified by a size s; and a value v;. We are also given a size bound S (the size of our knapsack).
The goal is to find the subset of items of maximum total value such that sum of their sizes is at
most S (they all fit into the knapsack).

We can solve the knapsack problem in exponential time by trying all possible subsets. With
Dynamic Programming, we can reduce this to time O(nS).

Let’s do this top down by starting with a simple recursive solution and then trying to memoize
it. Let’s start by just computing the best possible total value, and we afterwards can see how to
actually extract the items needed.

// Recursive algorithm: either we use the last element or we don’t.
Value(n,S) // S = space left, n = # items still to choose from
{

if (n == 0) return 0;

if (s_n > S) result = Value(n-1,S); // can’t use nth item

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};

return result;

Right now, this takes exponential time. But, notice that there are only O(nS) different pairs of
values the arguments can possibly take on, so this is perfect for memoizing. As with the LCS
problem, let us initialize a 2-d array arr[i] [j] to “unknown” for all 1, j.

Value(n,S)
{
if (n == 0) return O;
if (arr[n] [S] '= unknown) return arr[n][S]; // <- added this

if (s_n > S) result = Value(n-1,83);

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};
arr[n] [S] = result; // <- and this
return result;

}

Since any given pair of arguments to Value can pass through the array check only once, and in
doing so produces at most two recursive calls, we have at most 2n(S + 1) recursive calls total, and
the total time is O(nS).

So far we have only discussed computing the wvalue of the optimal solution. How can we get
the items? As usual for Dynamic Programming, we can do this by just working backwards: if
arr[n] [S] = arr[n-1][S] then we didn’t use the nth item so we just recursively work backwards
from arr [n-1] [S]. Otherwise, we did use that item, so we just output the nth item and recursively
work backwards from arr[n-1] [S-s n]. One can also do bottom-up Dynamic Programming.

11.6 Example #3: Matrix product parenthesization

Our final example for Dynamic Programming is the matriz product parenthesization problem.

11.6. EXAMPLE #3: MATRIX PRODUCT PARENTHESIZATION 64

Say we want to multiply three matrices X, Y, and Z. We could do it like (XY)Z or like X(Y Z).
Which way we do the multiplication doesn’t affect the final outcome but it can affect the running
time to compute it. For example, say X is 100x20, Y is 20x100, and Z is 100x20. So, the end
result will be a 100x20 matrix. If we multiply using the usual algorithm, then to multiply an fxm

matrix by an mxn matrix takes time O(¢mn). So in this case, which is better, doing (XY)Z or
X(YZ)?

Answer: X(Y Z) is better because computing Y Z takes 20x100x20 steps, producing a 20x20 matrix,
and then multiplying this by X takes another 20x100x20 steps, for a total of 2x20x100x20. But,
doing it the other way takes 100x20x100 steps to compute XY, and then multplying this with Z
takes another 100x20x100 steps, so overall this way takes 5 times longer. More generally, what if
we want to multiply a series of n matrices?

Definition 11.3 The Matrix Product Parenthesization problem is as follows. Suppose we
need to multiply a series of matrices: Ay X Ag X Ag X ... X A,. Given the dimensions of these
matrices, what is the best way to parenthesize them, assuming for simplicity that standard matriz
multiplication is to be used (e.g., not Strassen)?

There are an exponential number of different possible parenthesizations, in fact (2(7?__11)) /n, so we

don’t want to search through all of them. Dynamic Programming gives us a better way.

As before, let’s first think: how might we do this recursively? One way is that for each possible
split for the final multiplication, recursively solve for the optimal parenthesization of the left and
right sides, and calculate the total cost (the sum of the costs returned by the two recursive calls
plus the ¢mn cost of the final multiplication, where “m” depends on the location of that split).
Then take the overall best top-level split.

For Dynamic Programming, the key question is now: in the above procedure, as you go through the
recursion, what do the subproblems look like and how many are there? Answer: each subproblem
looks like “what is the best way to multiply some sub-interval of the matrices A; x ... x A;7” So,
there are only O(n?) different subproblems.

The second question is now: how long does it take to solve a given subproblem assuming you’ve
already solved all the smaller subproblems (i.e., how much time is spent inside any given recursive
call)? Answer: to figure out how to best multiply A; x...x A;, we just consider all possible middle
points k£ and select the one that minimizes:

optimal cost to multiply A4; ... Ag «— already computed
+ optimal cost to multiply Ap4;...A; <« already computed
+ cost to multiply the results. « get this from the dimensions

This just takes O(1) work for any given k, and there are at most n different values k to consider, so
overall we just spend O(n) time per subproblem. So, if we use Dynamic Programming to save our
results in a lookup table, then since there are only O(n?) subproblems we will spend only O(n?)
time overall.

If you want to do this using bottom-up Dynamic Programming, you would first solve for all sub-
problems with 7 — ¢ = 1, then solve for all with 7 — ¢ = 2, and so on, storing your results in an n
by n matrix. The main difference between this problem and the two previous ones we have seen is
that any given subproblem takes time O(n) to solve rather than O(1), which is why we get O(n3)

11.7. HIGH-LEVEL DISCUSSION OF DYNAMIC PROGRAMMING 65

total running time. It turns out that by being very clever you can actually reduce this to O(1)
amortized time per subproblem, producing an O(n?)-time algorithm, but we won’t get into that
here.?

11.7 High-level discussion of Dynamic Programming

What kinds of problems can be solved using Dynamic Programming? One property these problems
have is that if the optimal solution involves solving a subproblem, then it uses the optimal solution
to that subproblem. For instance, say we want to find the shortest path from A to B in a graph,
and say this shortest path goes through C. Then it must be using the shortest path from C' to B.
Or, in the knapsack example, if the optimal solution does not use item n, then it is the optimal
solution for the problem in which item n does not exist. The other key property is that there
should be only a polynomial number of different subproblems. These two properties together allow
us to build the optimal solution to the final problem from optimal solutions to subproblems.

In the top-down view of dynamic programming, the first property above corresponds to being
able to write down a recursive procedure for the problem we want to solve. The second property
corresponds to making sure that this recursive procedure makes only a polynomial number of
different recursive calls. In particular, one can often notice this second property by examining
the arguments to the recursive procedure: e.g., if there are only two integer arguments that range
between 1 and n, then there can be at most n? different recursive calls.

Sometimes you need to do a little work on the problem to get the optimal-subproblem-solution
property. For instance, suppose we are trying to find paths between locations in a city, and some
intersections have no-left-turn rules (this is particulatly bad in San Francisco). Then, just because
the fastest way from A to B goes through intersection C, it doesn’t necessarily use the fastest way
to C' because you might need to be coming into C' in the correct direction. In fact, the right way
to model that problem as a graph is not to have one node per intersection, but rather to have one
node per (intersection, direction) pair. That way you recover the property you need.

3For details, see Knuth (insert ref).

Lecture 12

Graph Algorithms I

12.1 Overview

This is the first of several lectures on graph algorithms. We will see how simple algorithms like
depth-first-search can be used in clever ways (for a problem known as topological sorting) and will
see how Dynamic Programming can be used to solve problems of finding shortest paths. Topics in
this lecture include:

e Basic notation and terminology for graphs.
e Depth-first-search for Topological Sorting.

e Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for single-
source) and Floyd-Warshall (for all-pairs).

12.2 Introduction

Many algorithmic problems can be modeled as problems on graphs. Today we will talk about a
few important ones and we will continue talking about graph algorithms for much of the rest of
the course.

As a reminder of basic terminology: a graph is a set of nodes or vertices, with edges between some
of the nodes. We will use V' to denote the set of vertices and E to denote the set of edges. If there
is an edge between two vertices, we call them neighbors. The degree of a vertex is the number of
neighbors it has. Unless otherwise specified, we will not allow self-loops or multi-edges (multiple
edges between the same pair of nodes). As is standard with discussing graphs, we will use n = |V|,
and m = |E|, and we will let V' ={1,...,n}.

The above describes an undirected graph. In a directed graph, each edge now has a direction. For
each node, we can now talk about out-neighbors (and out-degree) and in-neighbors (and in-degree).
In a directed graph you may have both an edge from i to j and an edge from j to 7.

To make sure we are all on the same page, what is the maximum number of total edges in an
undirected graph? Answer: (3). What about a directed graph? Answer: n(n — 1).

66

12.3. TOPOLOGICAL SORTING AND DEPTH-FIRST SEARCH 67

There are two standard representations for graphs. The first is an adjacency list, which is an array
of size n where A[i] is the list of out-neighbors of node i. The second is an adjacency matriz, which
is an n by n matrix where A7, j| = 1 iff there is an edge from i to j. For an undirected graph, the
adjacency matrix will be symmetric. Note that if the graph is reasonably sparse, then an adjacency
list will be more compact than an adjacency matrix, because we are only implicitly representing
the non-edges. In addition, an adjacency list allows us to access all edges out of some node v in
time proportional to the out-degree of v. In general, however, the most convenient representation
for a graph will depend on what we want to do with it.

We will also talk about weighted graphs where edges may have weights or costs on them. The
best notion of an adjacency matrix for such graphs (e.g., should non-edges have weight 0 or weight
infinity) will again depend on what problem we are trying to model.

12.3 Topological sorting and Depth-first Search

A Directed Acyclic Graph (DAG) is a directed graph without any cycles.! E.g.,

A (D) Q

(B—®
Given a DAG, the topological sorting problem is to find an ordering of the vertices such that all
edges go forward in the ordering. A typical situation where this problem comes up is when you are
given a set of tasks to do with precedence constraints (you need to do A and F' before you can do

B, etc.), and you want to find a legal ordering for performing the jobs. We will assume here that
the graph is represented using an adjacency list.

One way to solve the topological sorting problem is to put all the nodes into a priority queue
according to in-degree. You then repeatedly pull out the node of minimum in-degree (which should
be zero — otherwise you output “graph is not acyclic”) and then decrement the keys of each
of its out-neighbors. Using a heap to implement the priority queue, this takes time O(mlogn).
However, it turns out there is a better algorithm: a simple but clever O(m + n)-time approach
based on depth-first search.?

To be specific, by a Depth-First Search (DFS) of a graph we mean the following procedure. First,
pick a node and perform a standard depth-first search from there. When that DFS returns, if
the whole graph has not yet been visited, pick the next unvisited node and repeat the process.

Tt would perhaps be more proper to call this an acyclic directed graph, but “DAG” is easier to say.

2You can also directly improve the first approach to O(m + n) time by using the fact that the minimum always
occurs at zero (think about how you might use that fact to speed up the algorithm). But we will instead examine
the DFS-based algorithm because it is particularly elegant.

12.4. SHORTEST PATHS 68

Continue until all vertices have been visited. Specifically, as pseudocode, we have:

DFSmain(G) :
For v=1 to n: if v is not yet visited, do DFS(v).

DFS(v):
mark v as visited. // entering node v
for each unmarked out-neighbor w of v: do DFS(w).
return. // exiting node v.

DFS takes time O(1 4 out-degree(v)) per vertex v, for a total time of O(m + n). Here is now how
we can use this to perform a topological sorting:

1. Do depth-first search of GG, outputting the nodes as you exit them.

2. Reverse the order of the list output in Step 1.

Claim 12.1 If there is an edge from u to v, then v is exited first. (This implies that when we
reverse the order, all edges point forward and we have a topological sorting.)

Proof: [In this proof, think of u = B, and v = D in the previous picture.] The claim is easy to
see if our DFS entered node u before ever entering node v, because it will eventually enter v and
then exit v before popping out of the recursion for DFS(u). But, what if we entered v first? In
this case, we would exit v before even entering u since there cannot be a path from v to u (else the
graph wouldn’t be acyclic). So, that’sit. H

12.4 Shortest Paths

We are now going to turn to another basic graph problem: finding shortest paths in a weighted
graph, and we will look at several algorithms based on Dynamic Programming. For an edge (i, 7)
in our graph, let’s use len(i, j) to denote its length. The basic shortest-path problem is as follows:

Definition 12.1 Given a weighted, directed graph G, a start node s and a destination node t, the
s-t shortest path problem is to output the shortest path from s to t. The single-source shortest
path problem is to find shortest paths from s to every node in G. The (algorithmically equivalent)
single-sink shortest path problem is to find shortest paths from every node in G to t.

We will allow for negative-weight edges (we’ll later see some problems where this comes up when
using shortest-path algorithms as a subroutine) but will assume no negative-weight cycles (else the
shortest path can wrap around such a cycle infinitely often and has length negative infinity). As
a shorthand, if there is an edge of length ¢ from 7 to 7 and also an edge of length ¢ from j to 1,
we will often just draw them together as a single undirected edge. So, all such edges must have
positive weight.

12.4. SHORTEST PATHS 69

12.4.1 The Bellman-Ford Algorithm

We will now look at a Dynamic Programming algorithm called the Bellman-Ford Algorithm for
the single-sink (or single-source) shortest path problem.? Let us develop the algorithm using the
following example:

t 60 ,—~ 30
0 \Jy 2

40 -40 10

15 30
\2) >

How can we use Dyanamic Programming to find the shortest path from all nodes to t7 First of all,
as usual for Dynamic Programming, let’s just compute the lengths of the shortest paths first, and
afterwards we can easily reconstruct the paths themselves. The idea for the algorithm is as follows:

1. For each node v, find the length of the shortest path to ¢ that uses at most 1 edge, or write
down oo if there is no such path.

This is easy: if v =t we get 0; if (v,t) € E then we get len(v,t); else just put down oc.

2. Now, suppose for all v we have solved for length of the shortest path to t that uses i — 1 or
fewer edges. How can we use this to solve for the shortest path that uses ¢ or fewer edges?

Answer: the shortest path from v to ¢ that uses i or fewer edges will first go to some neighbor
x of v, and then take the shortest path from z to ¢ that uses i — 1 or fewer edges, which we’'ve
already solved for! So, we just need to take the min over all neighbors x of v.

3. How far do we need to go? Answer: at most i = n — 1 edges.

Specifically, here is pseudocode for the algorithm. We will use d[v] [i] to denote the length of the
shortest path from v to ¢ that uses i or fewer edges (if it exists) and infinity otherwise (“d” for
“distance”). Also, for convenience we will use a base case of i = 0 rather than i = 1.

Bellman-Ford pseudocode:
initialize d[v] [0] = infinity for v != t. d[t][i]=0 for all i.
for i=1 to n-1:

for each v != t:
d[v][i] = HﬂnE (len(v,x) + d[x][i-11)
v,T)E

For each v, output d[v][n-1].

Try it on the above graph!

We already argued for correctness of the algorithm. What about running time? The min operation
takes time proportional to the out-degree of v. So, the inner for-loop takes time proportional to
the sum of the out-degrees of all the nodes, which is O(m). Therefore, the total time is O(mn).

3Bellman is credited for inventing Dynamic Programming, and even if the technique can be said to exist inside
some algorithms before him, he was the first to distill it as an important technique.

12.5. ALL-PAIRS SHORTEST PATHS 70

So far we have only calculated the lengths of the shortest paths; how can we reconstruct the paths
themselves? One easy way is (as usual for DP) to work backwards: if you're at vertex v at distance
d[v] from t, move to the neighbor x such that d[v] = d[x] + len(v,z). This allows us to reconstruct
the path in time O(m + n) which is just a low-order term in the overall running time.

12.5 All-pairs Shortest Paths

Say we want to compute the length of the shortest path between every pair of vertices. This is
called the all-pairs shortest path problem. If we use Bellman-Ford for all n possible destinations ¢,
this would take time O(mn?). We will now see two alternative Dynamic-Programming algorithms
for this problem: the first uses the matrix representation of graphs and runs in time O(n>logn);
the second, called the Floyd- Warshall algorithm uses a different way of breaking into subproblems
and runs in time O(n?).

12.5.1 All-pairs Shortest Paths via Matrix Products

Given a weighted graph G, define the matrix A = A(G) as follows:
e Ali,i] =0 for all 1.
e If there is an edge from i to j, then A[i, j| = len(i, j).
e Otherwise, Afi, j] = oo.

Le., Ali,j] is the length of the shortest path from ¢ to j using 1 or fewer edges. Now, following the
basic Dynamic Programming idea, can we use this to produce a new matrix B where B[i, j| is the
length of the shortest path from 7 to j using 2 or fewer edges?

Answer: yes. Bli,j] = ming(A[i, k] + A[k, j]). Think about why this is true!

I.e., what we want to do is compute a matrix product B = A x A except we change “*” to “+”
and we change “+” to “min” in the definition. In other words, instead of computing the sum of
products, we compute the min of sums.

What if we now want to get the shortest paths that use 4 or fewer edges? To do this, we just need
to compute C' = B x B (using our new definition of matrix product). Le., to get from i to j using
4 or fewer edges, we need to go from ¢ to some intermediate node k using 2 or fewer edges, and
then from k to j using 2 or fewer edges.

So, to solve for all-pairs shortest paths we just need to keep squaring O(logn) times. Each matrix
multiplication takes time O(n?) so the overall running time is O(n3logn).

12.5.2 All-pairs shortest paths via Floyd-Warshall

Here is an algorithm that shaves off the O(logn) and runs in time O(n?3). The idea is that instead of
increasing the number of edges in the path, we’ll increase the set of vertices we allow as intermediate
nodes in the path. In other words, starting from the same base case (the shortest path that uses no
intermediate nodes), we’ll then go on to considering the shortest path that’s allowed to use node 1
as an intermediate node, the shortest path that’s allowed to use {1,2} as intermediate nodes, and
SO on.

12.5. ALL-PAIRS SHORTEST PATHS 71

// After each iteration of the outside loop, A[i][j] = length of the
// shortest i->j path that’s allowed to use vertices in the set 1..k
for k = 1 to n do:

for each i,j do:
Ali]1[3j] = min(A[i]1[3], CALil[k] + A[kI[31D;

Le., you either go through node k or you don’t. The total time for this algorithm is O(n3). What’s
amazing here is how compact and simple the code is!

Lecture 13

Graph Algorithms 11

13.1 Overview

In this lecture we begin with one more algorithm for the shortest path problem, Dijkstra’s algorithm.
We then will see how the basic approach of this algorithm can be used to solve other problems
including finding maximum bottleneck paths and the minimum spanning tree (MST) problem. We
will then expand on the minimum spanning tree problem, giving one more algorithm, Kruskal’s
algorithm, which to implement efficiently requires an good data structure for something called the
union-find problem. Topics in this lecture include:

e Dijkstra’s algorithm for shortest paths when no edges have negative weight.
e The Maximum Bottleneck Path problem.

e Minimum Spanning Trees: Prim’s algorithm and Kruskal’s algorithm.

13.2 Shortest paths revisited: Dijkstra’s algorithm

Recall the single-source shortest path problem: given a graph G, and a start node s, we want to
find the shortest path from s to all other nodes in G. These shortest paths can all be described by
a tree called the shortest path tree from start node s.

Definition 13.1 A Shortest Path Tree in G from start node s is a tree (directed outward from
s if G is a directed graph) such that the shortest path in G from s to any destination vertez t is the
path from s to t in the tree.

Why must such a tree exist? The reason is that if the shortest path from s to ¢ goes through some
intermediate vertex v, then it must use a shortest path from s to v. Thus, every vertex ¢t # s can
be assigned a “parent”, namely the second-to-last vertex in this path (if there are multiple equally-
short paths, pick one arbitrarily), creating a tree. In fact, the Bellman-Ford Dynamic-Programming
algorithm from the last class was based on this “optimal subproblem” property.

The first algorithm for today, Dijkstra’s algorithm, builds the tree outward from s in a greedy
fashion. Dijkstra’s algorithm is faster than Bellman-Ford. However, it requires that all edge

72

13.2. SHORTEST PATHS REVISITED: DIJKSTRA’S ALGORITHM 73

lengths be non-negative. See if you can figure out where the proof of correctness of this algorithm
requires non-negativity.

We will describe the algorithm the way one views it conceptually, rather than the way one would
code it up (we will discuss that after proving correctness).

Dijkstra’s Algorithm:
Input: Graph G, with each edge e having a length len(e), and a start node s.

Initialize: tree = {s}, no edges. Label s as having distance 0 to itself.
Invariant: nodes in the tree are labeled with the correct distance to s.

Repeat:
1. For each neighbor z of the tree, compute an (over)-estimate of its distance to s:

distance(z) = (m)in [distance(v) + len(e)] (13.1)
e=(v,x):vEtree

In other words, by our invariant, this is the length of the shortest path to z whose only
edge not in the tree is the very last edge.

2. Insert the node x of minimum distance into tree, connecting it via the argmin (the edge
e used to get distance(x) in the expression (13.1)).

Let us run the algorithm on the following example starting from vertex A:

5 8
A (B) c

\/
1 1 3
2 4
D (E) F

Theorem 13.1 Dijkstra’s algorithm correctly produces a shortest path tree from start node s.
Specifically, even if some of distances in step 1 are too large, the minimum one is correct.

Proof: Say x is the neighbor of the tree of smallest distance(x). Let P denote the true shortest
path from s to x, choosing the one with the fewest non-tree edges if there are ties. What we need to
argue is that the last edge in P must come directly from the tree. Let’s argue this by contradiction.
Suppose instead the first non-tree vertex in P is some node y # x. Then, the length of P must be
at least distance(y), and by definition, distance(x) is smaller (or at least as small if there is a tie).
This contradicts the definition of P. N

Did you catch where “non-negativity” came in in the proof? Can you find an example with
negative-weight directed edges where Dijkstra’s algorithm actually fails?

13.3. MAXIMUM-BOTTLENECK PATH 74

Running time: To implement this efficiently, rather than recomputing the distances every time
in step 1, you simply want to update the ones that actually are affected when a new node is added
to the tree in step 2, namely the neighbors of the node added. If you use a heap data structure
to store the neighbors of the tree, you can get a running time of O(mlogn). In particular, you
can start by giving all nodes a distance of infinity except for the start with a distance of 0, and
putting all nodes into a min-heap. Then, repeatedly pull off the minimum and update its neighbors,
tentatively assigning parents whenever the distance of some node is lowered. It takes linear time
to initialize the heap, and then we perform m updates at a cost of O(logn) each for a total time
of O(mlogn).

If you use something called a “Fibonacci heap” (that we’re not going to talk about) you can actually
get the running time down to O(m+nlogn). The key point about the Fibonacci heap is that while
it takes O(logn) time to remove the minimum element just like a standard heap (an operation we
perform n times), it takes only amortized O(1) time to decrease the value of any given key (an
operation we perform m times).

13.3 Maximum-bottleneck path

Here is another problem you can solve with this type of algorithm, called the “maximum bottleneck
path” problem. Imagine the edge weights represent capacities of the edges (“widths” rather than
“lengths”) and you want the path between two nodes whose minimum width is largest. How could
you modify Dijkstra’s algorithm to solve this?

To be clear, define the width of a path to be the minimum width of any edge on the path, and for a
vertex v, define widthto(v) to be the width of the widest path from s to v (say that widthto(s) = o0).
To modify Dijkstra’s algorithm, we just need to change the update rule to:

widthto(z) = max [min(widthto(v), width(e))]

e=(v,x):wEtree

and now put the node x of mazimum “widthto” into tree, connecting it via the argmax. We’ll
actually use this later in the course.

13.4 Minimum Spanning Trees

A spanning tree of a graph is a tree that touches all the vertices (so, it only makes sense in
a connected graph). A minimum spanning tree (MST) is a spanning tree whose sum of edge
lengths is as short as possible (there may be more than one). We will sometimes call the sum of
edge lengths in a tree the size of the tree. For instance, imagine you are setting up a communication
network among a set of sites and you want to use the least amount of wire possible. Note: our
definition is only for undirected graphs.

13.4. MINIMUM SPANNING TREES 75

What is the MST in the graph below?

13.4.1 Prim’s algorithm

Prim’s algorithm is an MST algorithm that works much like Dijkstra’s algorithm does for shortest
path trees. In fact, it’s even simpler (though the correctness proof is a bit trickier).

Prim’s Algorithm:

1. Pick some arbitrary start node s. Initialize tree T' = {s}.

2. Repeatedly add the shortest edge incident to T (the shortest edge having one vertex in
T and one vertex not in 7') until the tree spans all the nodes.

So the algorithm is the same as Dijsktra’s algorithm, except you don’t add distance(v) to the length
of the edge when deciding which edge to put in next. For instance, what does Prim’s algorithm do
on the above graph?

Before proving correctness for the algorithm, we first need a useful fact about spanning trees: if
you take any spanning tree and add a new edge to it, this creates a cycle. The reason is that there
already was one path between the endpoints (since it’s a spanning tree), and now there are two. If
you then remove any edge in the cycle, you get back a spanning tree (removing one edge from a
cycle cannot disconnect a graph).

Theorem 13.2 Prim’s algorithm correctly finds a minimum spanning tree of the given graph.

Proof: We will prove correctness by induction. Let G be the given graph. Our inductive hypothesis
will be that the tree T' constructed so far is consistent with (is a subtree of) some minimum spanning
tree M of GG. This is certainly true at the start. Now, let e be the edge chosen by the algorithm.
We need to argue that the new tree, T'U {e} is also consistent with some minimum spanning tree
M’ of G. If e € M then we are done (M’ = M). Else, we argue as follows.

Consider adding e to M. As noted above, this creates a cycle. Since e has one endpoint in T" and
one outside T, if we trace around this cycle we must eventually get to an edge €’ that goes back in
to T. We know len(e’) > len(e) by definition of the algorithm. So, if we add e to M and remove ¢/,
we get a new tree M’ that is no larger than M was and contains 7'U{e}, maintaining our induction
and proving the theorem. H

13.4. MINIMUM SPANNING TREES 76

Running time: We can implement this in the same was as Dijkstra’s algorithm, getting an
O(mlogn) running time if we use a standard heap, or O(m + nlogn) running time if we use a
Fibonacci heap. The only difference with Dijkstra’s algorithm is that when we store the neighbors
of T in a heap, we use priority values equal to the shortest edge connecting them to 7' (rather than
the smallest sum of “edge length plus distance of endpoint to s”).

13.4.2 Kruskal’s algorithm

Here is another algorithm for finding minimum spanning trees called Kruskal’s algorithm. It is also
greedy but works in a different way.

Kruskal’s Algorithm:
Sort edges by length and examine them from shortest to longest. Put each edge into the
current forest (a forest is just a set of trees) if it doesn’t form a cycle with the edges chosen
so far.

E.g., let’s look at how it behaves in the graph below:

B
A (B) c
1 1 6
2 4
D (E) F

Kruskal’s algorithm sorts the edges and then puts them in one at a time so long as they don’t form
a cycle. So, first the AD and BE edges will be added, then the DE edge, and then the EF edge.
The AB edge will be skipped over because it forms a cycle, and finally the CF edge will be added
(at that point you can either notice that you have included n — 1 edges and therefore are done, or
else keep going, skipping over all the remaining edges one at a time).

Theorem 13.3 Kruskal’s algorithm correctly finds a minimum spanning tree of the given graph.

Proof: We can use a similar argument to the one we used for Prim’s algorithm. Let G be the
given graph, and let F' be the forest we have constructed so far (initially, ' consists of n trees of
1 node each, and at each step two trees get merged until finally F' is just a single tree at the end).
Assume by induction that there exists an MST M of G that is consistent with F, i.e., all edges
in F are also in M; this is clearly true at the start when F' has no edges. Let e be the next edge
added by the algorithm. Our goal is to show that there exists an MST M’ of G consistent with
F U {e}.

If e € M then we are done (M’ = M). Else add e into M, creating a cycle. Since the two endpoints
of e were in different trees of F', if you follow around the cycle you must eventually traverse some
edge ¢’ # e whose endpoints are also in two different trees of F' (because you eventually have to get
back to the node you started from). Now, both e and ¢’ were eligible to be added into F', which
by definition of our algorithm means that len(e) < len(e’). So, adding e and removing €’ from M
creates a tree M’ that is also a MST and contains F'U {e}, as desired. N

13.4. MINIMUM SPANNING TREES 7

Running time: The first step is sorting the edges by length which takes time O(mlogm). Then,
for each edge we need to test if it connects two different components. This seems like it should be
a real pain: how can we tell if an edge has both endpoints in the same component? It turns out
there’s a nice data structure called the Union-Find data structure for doing this operation. It is
so efficient that it actually will be a low-order cost compared to the sorting step.

We will talk about the union-find problem in the next class, but just as a preview, the simpler
version of that data structure takes time O(m+nlogn) for our series of operations. This is already
good enough for us, since it is low-order compared to the sorting time. There is also a more
sophisticated version, however, whose total time is O(m1g* n), in fact O(ma(n)), where a(n) is the
inverse-Ackermann function that grows even more slowly than lg*.

What is 1g*? 1g*(n) is the number of times you need to take log, until you get down to 1. So,

g'(2) =
Ig* (22 4)
lg*(2* = 16) =
)
)

lg* (216 = 65536
(265536

SIS IR R

I won’t define Ackerman, but to get a(n) up to 5, you need n to be at least a stack of 256 2’s.

Lecture 14

Midterm

Midterm today. Good luck everyone!

78

Lecture 15

Graph Algorithms III: Union-Find

15.1 Overview

In this lecture we describe the union-find problem. This is a problem that captures the key task we
had to solve in order to efficiently implement Kruskal’s algorithm. We then give two data structures
for it with good amortized running time.

15.2 Motivation

To motivate the union-find problem, let’s recall Kruskal’s minimum spanning tree algorithm.

Kruskal’s Algorithm (recap):
Sort edges by length and examine them from shortest to longest. Put each edge into the
current forest if it doesn’t form a cycle with the edges chosen so far.

We argued correctness last time. Today, our concern is running time. The initial step takes time
O(|E|log |E|) to sort. Then, for each edge, we need to test if it connects two different components.
If it does, we will insert the edge, merging the two components into one; if it doesn’t (the two
endpoints are in the same component), then we will skip this edge and go on to the next edge.
So, to do this efficiently we need a data structure that can support the basic operations of (a)
determining if two nodes are in the same component, and (b) merging two components together.
This is the union-find problem.

15.3 The Union-Find Problem

The general setting for the union-find problem is that we are maintaining a collection of disjoint
sets {S1,52,...,Sk} over some universe, with the following operations:

MakeSet(z): create the set {z}.

Union(z,y): replace the set z is in (let’s call it S) and the set y is in (let’s call it S’) with the
single set S U S’.

79

15.4. DATA STRUCTURE 1 (LIST-BASED) 80

Find(z): return the unique ID for the set containing x (this is just some representative element of
this set).

Given these operations, we can implement Kruskal’s algorithm as follows. The sets S; will be the
sets of vertices in the different trees in our forest. We begin with MakeSet(v) for all vertices v
(every vertex is in its own tree). When we consider some edge (v, w) in the algorithm, we just test
whether Find(v) equals Find(w). If they are equal, it means that v and w are already in the same
tree so we skip over the edge. If they are not equal, we insert the edge into our forest and perform
a Union(v,w) operation. All together we will do |V| MakeSet operations, |V| — 1 Unions, and 2|E|
Find operations.

Notation and Preliminaries: in the discussion below, it will be convenient to define n as the
number of MakeSet operations and m as the total number of operations (this matches the number
of vertices and edges in the graph up to constant factors, and so is a reasonable use of n and
m). Also, it is easiest to think conceptually of these data structures as adding fields to the items
themselves, so there is never an issue of “how do I locate a given element v in the structure?”.

15.4 Data Structure 1 (list-based)

Our first data structure is a simple one with a very cute analysis. The total cost for the operations
will be O(m + nlogn).

In this data structure, the sets will be just represented as linked lists: each element has a pointer
to the next element in its list. However, we will augment the list so that each element also has a
pointer directly to head of its list. The head of the list is the representative element. We can now
implement the operations as follows:

MakeSet(z): just set x->head=x. This takes constant time.
Find(x): just return x->head. Also takes constant time.

Union(z,y): To perform a union operation we merge the two lists together, and reset the head
pointers on one of the lists to point to the head of the other.

Let A be the list containing x and B be the list containing y, with lengths L4 and Lp
respectively. Then we can do this in time O(L4 + Lp) by appending B onto the end of A as
follows. We first walk down A to the end, and set the final next pointer to point to y->head.
This takes time O(Ly4). Next we go to y->head and walk down B, resetting head pointers of
elements in B to point to x->head. This takes time O(Lp).

Can we reduce this to just O(Lp)? Yes. Instead of appending B onto the end of A, we can
just splice B into the middle of A, at x. L.e., let z=x->next, set x->next=y->head, then walk
down B as above, and finally set the final next pointer of B to z.

Can we reduce this to O(min(L 4, Lp))? Yes. Just store the length of each list in the head.
Then compare and insert the shorter list into the middle of the longer one. Then update the
length count to L4 + Lp.

We now prove this simple data structure has the running time we wanted.

15.5. DATA STRUCTURE 2 (TREE-BASED) 81

Theorem 15.1 The above algorithm has total running time O(m + nlogn).

Proof: The Find and MakeSet operations are constant time so they are covered by the O(m)
term. Each Union operation has cost proportional to the length of the list whose head pointers get
updated. So, we need to find some way of analyzing the total cost of the Union operations.

Here is the key idea: we can pay for the union operation by charging O(1) to each element whose
head pointer is updated. So, all we need to do is sum up the costs charged to all the elements over
the entire course of the algorithm. Let’s do this by looking from the point of view of some lowly
element . Over time, how many times does x get walked on and have its head pointer updated?
The answer is that its head pointer is updated at most logn times. The reason is that we only
update head pointers on the smaller of the two lists being joined, so every time x gets updated,
the size of the list it is in at least doubles, and this can happen at most logn times. So, we were
able to pay for unions by charging the elements whose head pointers are updated, and no element
gets charged more than O(logn) total, so the total cost for unions is O(nlogn), or O(m + nlogn)
for all the operations together. W

Recall that this is already low-order compared to the O(mlogm) sorting time for Kruskal’s algo-
rithm.

15.5 Data Structure 2 (tree-based)

Even though the running time of the list-based data structure was pretty fast, let’s think of ways
we could make it even faster. One idea is that instead of updating all the head pointers in list B
(or whichever was shorter) when we perform a Union, we could do this in a lazy way, just pointing
the head of B to the head of A and then waiting until we actually perform a find operation on
some item x before updating its pointer. This will decrease the cost of the Union operations but
will increase the cost of Find operations because we may have to take multiple hops. Notice that
by doing this we no longer need the downward pointers: what we have in general is a collection
of trees, with all links pointing up. Another idea is that rather than deciding which of the two
heads (or roots) should be the new one based on the size of their sets, perhaps there is some other
quantity that would give us better performance. In particular, it turns out we can do better by
setting the new root based on which tree has larger rank, which we will define in a minute.

We will prove that by implementing the two optimizations described above (lazy updates and union-
by-rank), the total cost is bounded above by O(mlg* n), where recall that 1g* n is the number of
times you need to take log, until you get down to 1. For instance,

1g*(265%36) = 1 4 1g*(65536) = 2 +1g*(16) = 3 + 1g*(4) = 4 + 1g*(2) = 5.

So, basically, 1g* n is never bigger than 5. Technically, the running time of this algorithm is even
better: O(ma(m,n)) where « is the inverse-Ackermann function which grows even more slowly
than lg*. But the lg* n bound is hard enough to prove — let’s not go completely overboard!

We now describe the procedure more specifically. Each element (node) will have two fields: a parent
pointer that points to its parent in its tree (or itself if it is the root) and a rank, which is an integer
used to determine which node becomes the new root in a Union operation. The operations are as
follows.

15.5. DATA STRUCTURE 2 (TREE-BASED) 82

MakeSet(z): set z’s rank to 0 and its parent pointer to itself. This takes constant time.

Find(z): starting from x, follow the parent pointers until you reach the root, updating x and all
the nodes we pass over to point to the root. This is called path compression.

The running time for Find(z) is proportional to (original) distance of x to its root.

Union(z,y): Let Union(z,y) = Link(Find(z), Find(y)), where Link(rootl,root2) behaves as fol-
lows. If the one of the roots has larger rank than the other, then that one becomes the new
root, and the other (smaller rank) root has its parent pointer updated to point to it. If the
two roots have equal rank, then one of them (arbitrarily) is picked to be the new root and its
rank is increased by 1. This procedure is called union by rank.

Properties of ranks: To help us understand this procedure, let’s first develop some properties
of ranks.

1. The rank of a node is the same as what the height of its subtree would be if we didn’t do
path compression. This is easy to see: if you take two trees of different heights and join them
by making the root of the shorter tree into a child of the root of the taller tree, the heights
do not change, but if the trees were the same height, then the final tree will have its height
increase by 1.

2. If x is not a root, then rank(x) is strictly less than the rank of z’s parent. We can see
this by induction: the Union operation maintains this property, and the Find operation only
increases the difference between the ranks of nodes and their parents.

3. The rank of a node z can only change if = is a root. Furthermore, once a node becomes a
non-root, it is never a root again. These are immediate from the algorithm.

4. There are at most n/2" nodes of rank > r. The reason is that when a (root) node first reaches
rank r, its tree must have at least 2" nodes (this is easy to see by induction). Furthermore,
by property 2, all the nodes in its tree (except for itself) have rank < r, and their ranks are
never going to change by property 3. This means that (a) for each node x of rank > r, we
can identify a set S, of at least 2" — 1 nodes of smaller rank, and (b) for any two nodes x
and y of rank > r, the sets S, and S, are disjoint. Since there are n nodes total, this implies
there can be at most n/2" nodes of rank > r.

We’re now ready to prove the following theorem.
Theorem 15.2 The above tree-based algorithm has total running time O(mlg*n).

Proof: Let’s begin with the easy parts. First of all, the Union does two Find operations plus a
constant amount of extra work. So, we only need to worry about the time for the (at most 2m)
Find operations. Second, we can count the cost of a Find operation by charging $1 for each parent
pointer examined. So, when we do a Find(x), if was a root then pay $1 (just a constant, so
that’s ok). If = was a child of a root we pay $2 (also just a constant, so that’s ok also). If z was
lower, then the very rough idea is that (except for the last $2) every dollar we spend is shrinking
the tree because of our path compression, so we’ll be able to amortize this cost somehow. For the
remaining part of the proof, we're only going to worry about the steps taken in a Find(z) operation
up until we reach the child of the root, since the remainder is just constant time per operation.
We’ll analyze this using the ranks, and the properties we figured out above.

15.5. DATA STRUCTURE 2 (TREE-BASED) 83

Step 1: let’s imagine putting non-root nodes into buckets according to their rank. Bucket 0
contains all non-root nodes of rank 0, bucket 1 has all of rank 1, bucket 2 has ranks 2 through

2
22 — 1, bucket 3 has ranks 22 through 22 1, bucket 4 has ranks 22* through 22% _ 1, etc. In
general, a bucket has ranks r through 2" — 1. In total, we have O(lg" n) buckets.

The point of this definition is that the number of nodes with rank in any given bucket is at most
n/(upper bound of bucket + 1), by property (4) of ranks above.

Step 2: When we walk up the tree in the Find(z) operation, we need to charge our steps to
something. Here’s the rule we will use: if the step we take moves us from a node u to a node v
such that v is in the same bucket as u, then we charge it to node u (the walk-ee). But if v is in a
higher bucket, we charge that step to x (the walk-er).

The easy part of this is the charge to z. We can move up in buckets at most O(lg* n) times, since
there are only O(lg* n) different buckets. So, the total cost charged to the walk-ers (adding up over
the m Find operations) is at most O(mlg* n).

The harder part is the charge to the walk-ee. The point here is that first of all, the node u charged
is not a root, so its rank is never going to change. Secondly, every time we charge this node u, the
rank of its new parent (after path compression) is at least 1 larger than the rank of its previous
parent by property 2. Now, it is true that increasing the rank of w’s parent could conceivably
happen logn times, which to us is a “big” number. But, once its parent’s rank becomes large
enough that it is in the next bucket, we never charge node u again as walk-ee. So, the bottom line
is that the maximum charge any node u gets is the range of his bucket.

To finish the proof, we just said that a bucket of upper bound B — 1 has at most n/B elements in
it, and its range is < B. So, the total charge to all walk-ees in this bucket over the entire course
of the algorithm is at most (n/B)B = n. (Remember that the only elements being charged are
non-roots, so once they start getting charged, their rank is fixed so they can’t jump to some other
bucket and start getting charged there too.) This means the total charge of this kind summed over
all buckets is at most n times the number of buckets which is O(nlg*n). B (Whew!)

Lecture 16

Network Flow 1

16.1 Overview

In these next two lectures we are going to talk about an important algorithmic problem called the
Network Flow Problem. Network flow is important because it can be used to express a wide variety
of different kinds of problems. So, by developing good algorithms for solving network flow, we
immediately will get algorithms for solving many other problems as well. In Operations Research
there are entire courses devoted to network flow and its variants. Topics in today’s lecture include:

e The definition of the network flow problem
e The basic Ford-Fulkerson algorithm
e The maxflow-mincut theorem

e The bipartite matching problem

16.2 The Network Flow Problem

We begin with a definition of the problem. We are given a directed graph G, a start node s, and a
sink node ¢. Each edge e in G has an associated non-negative capacity c(e), where for all non-edges
it is implicitly assumed that the capacity is 0. For example, consider the graph in Figure 16.1 below.

Figure 16.1: A network flow graph.

84

16.2. THE NETWORK FLOW PROBLEM 85

Our goal is to push as much flow as possible from s to ¢ in the graph. The rules are that no edge
can have flow exceeding its capacity, and for any vertex except for s and ¢, the flow in to the vertex
must equal the flow out from the vertex. That is,

Capacity constraint: On any edge e we have f(e) < c¢(e).

Flow conservation: For any vertex v & {s,t}, flow in equals flow out: Y, f(u,v) =, f(v,u).

Subject to these constraints, we want to maximize the total flow into ¢t. For instance, imagine we
want to route message traffic from the source to the sink, and the capacities tell us how much
bandwidth we're allowed on each edge.

E.g., in the above graph, what is the maximum flow from s to t? Answer: 5. Using “capacity[flow]”
notation, the positive flow looks as in Figure 16.2. Note that the flow can split and rejoin itself.

3[3]

2

3131 D

Figure 16.2: A network flow graph with positive flow shown using “capacity[flow]" notation.

How can you see that the above flow was really maximum? Notice, this flow saturates the a — ¢
and s — b edges, and, if you remove these, you disconnect ¢ from s. In other words, the graph
has an “s-t cut” of size 5 (a set of edges of total capacity 5 such that if you remove them, this
disconnects the source from the sink). The point is that any unit of flow going from s to ¢ must
take up at least 1 unit of capacity in these pipes. So, we know we’re optimal.

We just argued that in general, the maximum s-t flow < the capacity of the minimum s-t cut.
An important property of flows, that we will prove as a byproduct of analyzing an algorithm for
finding them, is that the maximum s-t flow is in fact equal to the capacity of the minimum s-¢ cut.
This is called the Mazflow-Mincut Theorem. In fact, the algorithm will find a flow of some value k
and a cut of capacity k, which will be proofs that both are optimal!

To describe the algorithm and analysis, it will help to be a bit more formal about a few of these
quantities.

Definition 16.1 An s-t cut is a set of edges whose removal disconnects t from s. Or, formally,
a cut is a partition of the vertex set into two pieces A and B where s € A and t € B. (The edges
of the cut are then all edges going from A to B).

Definition 16.2 The capacity of a cut (A, B) is the sum of capacities of edges in the cut. Or,
in the formal viewpoint, it is the sum of capacities of all edges going from A to B. (Don’t include
the edges from B to A.)

Definition 16.3 It will also be mathematically convenient for any edge (u,v) to define f(v,u) =
—f(u,v). This is called skew-symmetry. (We will think of flowing 1 unit on the edge from u to
v as equivalently flowing —1 units on the back-edge from v to u.)

16.3. THE FORD-FULKERSON ALGORITHM 86

The skew-symmetry convention makes it especially easy to add two flows together. For instance,
if we have one flow with 1 unit on the edge (¢,b) and another flow with 2 units on the edge (b, c),
then adding them edge by edge does the right thing, resulting in a net flow of 1 unit from b to c.
Also, using skew-symmetry, the total flow out of a node will always be the negative of the total flow
into a node, so if we wanted we could rewrite the flow conservation condition as Y-, f(u,v) = 0.

How can we find a maximum flow and prove it is correct? Here’s a very natural strategy: find a
path from s to ¢ and push as much flow on it as possible. Then look at the leftover capacities (an
important issue will be how exactly we define this, but we will get to it in a minute) and repeat.
Continue until there is no longer any path with capacity left to push any additional flow on. Of
course, we need to prove that this works: that we can’t somehow end up at a suboptimal solution by
making bad choices along the way. This approach, with the correct definition of “leftover capacity”,
is called the Ford-Fulkerson algorithm.

16.3 The Ford-Fulkerson algorithm

The Ford-Fulkerson algorithm is simply the following: while there exists an s — ¢ path P of
positive residual capacity (defined below), push the maximum possible flow along P. By the way,
these paths P are called augmenting paths, because you use them to augment the existing flow.

Residual capacity is just the capacity left over given the existing flow, where we will use skew-
symmetry to capture the notion that if we push f units of flow on an edge (u,v), this increases our
ability to push flow on the back-edge (v,u) by f.

Definition 16.4 Given a flow f in graph G, the residual capacity cs(u,v) is defined as cf(u,v) =
c(u,v) — f(u,v), where recall that by skew-symmetry we have f(v,u) = —f(u,v).

For example, given the flow in Figure 16.2, the edge (s, a) has residual capacity 1. The back-edge
(a, s) has residual capacity 3, because its original capacity was 0 and we have f(a,s) = —3.

Definition 16.5 Given a flow f in graph G, the residual graph G is the directed graph with all
edges of positive residual capacity, each one labeled by its residual capacity. Note: this may include
back-edges of the original graph G.

Let’s do an example. Consider the graph in Figure 16.1 and suppose we push two units of flow on
the path s — b — ¢ — t. We then end up with the following residual graph:

Figure 16.3: Residual graph resulting from pushing 2 units of flow along the path s-b-c-t in the graph
in Figure 16.1.

16.3. THE FORD-FULKERSON ALGORITHM 87

If we continue running Ford-Fulkerson, we see that in this graph the only path we can use to
augment the existing flow is the path s - a — ¢ — b — d — t. Pushing the maximum 3 units
on this path we then get the next residual graph, shown in Figure 16.4. At this point there is no

Figure 16.4: Residual graph resulting from pushing 3 units of flow along the path s-a-c-b-d-t in the
graph in Figure 16.3.

longer a path from s to t so we are done.

We can think of Ford-Fulkerson as at each step finding a new flow (along the augmenting path)
and adding it to the existing flow, where by adding two flows we mean adding them edge by edge.
Notice that the sum of two flows continues to satisfy flow-conservation and skew-symmetry. The
definition of residual capacity ensures that the flow found by Ford-Fulkerson is legal (doesn’t exceed
the capacity constraints in the original graph). We now need to prove that in fact it is mazimum.
We’ll worry about the number of iterations it takes and how to improve that later.

Note that one nice property of the residual graph is that it means that at each step we are left with
same type of problem we started with. So, to implement Ford-Fulkerson, we can use any black-box
path-finding method (e.g., DFS).

Theorem 16.1 The Ford-Fulkerson algorithm finds a mazximum flow.

Proof: Let’s look at the final residual graph. This graph must have s and t disconnected by
definition of the algorithm. Let A be the component containing s and B be the rest. Let ¢ be the
capacity of the (A, B) cut in the original graph — so we know we can’t do better than c.

The claim is that we in fact did find a flow of value ¢ (which therefore implies it is maximum).
Here’s why: let’s look at what happens to the residual capacity of the (A, B) cut after each iteration
of the algorithm. Say in some iteration we found a path with & units of flow. Then, even if the
path zig-zagged between A and B, every time we went from A to B we added k to the flow from A
to B and subtracted k from the residual capacity of the (A, B) cut, and every time we went from
B to A we took away k from this flow and added k to the residual capacity of the cut!; moreover,
we must have gone from A to B ezactly one more time than we went from B to A. So, the residual
capacity of this cut went down by exactly k. So, the drop in capacity is equal to the increase in
flow. Since at the end the residual capacity is zero (remember how we defined A and B) this means
the total flow is equal to c.

So, we’ve found a flow of value equal to the capacity of this cut. We know we can’t do better, so
this must be a max flow, and (A, B) must be a minimum cut. H

!This is where we use the fact that if we flow k units on the edge (u,v), then in addition to reducing the residual
capacity of the (u,v) edge by k we also add k to the residual capacity of the back-edge (v, u).

16.4. BIPARTITE MATCHING 88

Notice that in the above argument we actually proved the nonobvious mazflow-mincut theorem:

Theorem 16.2 In any graph G, for any two vertices s and t, the maximum flow from s to t equals
the capacity of the minimum (s,t)-cut.

We have also proven the integral-flow theorem: if all capacities are integers, then there is a maximum
flow in which all flows are integers. This seems obvious, but you’ll use it to show something that’s
not at all obvious on homework 5!

In terms of running time, if all capacities are integers and the maximum flow is F', then the
algorithm makes at most F' iterations (since each iteration pushes at least one more unit of flow
from s to t). We can implement each iteration in time O(m+mn) using DFS. So we get the following
result.

Theorem 16.3 If the given graph G has integer capacities, Ford-Fulkerson runs in time O(F(m+
n)) where F is the value of the mazximum s-t flow.

In the next lecture we will look at methods for reducing the number of iterations the algorithm
can take. For now, let’s see how we can use an algorithm for the max flow problem to solve other
problems as well: that is, how we can reduce other problems to the one we now know how to solve.

16.4 Bipartite Matching

Say we wanted to be more sophisticated about assigning groups to homework presentation slots.
We could ask each group to list the slots acceptable to them, and then write this as a bipartite
graph by drawing an edge between a group and a slot if that slot is acceptable to that group. For

example:
group slo

This is an example of a bipartite graph: a graph with two sides L and R such that all edges go
between L and R. A matching is a set of edges with no endpoints in common. What we want here
in assigning groups to time slots is a perfect matching: a matching that connects every point in
L with a point in R. For example, what is a perfect matching in the bipartite graph above?

More generally (say there is no perfect matching) we want a maximum matching: a matching
with the maximum possible number of edges. We can solve this as follows:

Bipartite Matching:

1. Set up a fake “start” node s connected to all vertices in L. Connect all vertices in R to a
fake “sink” node T. Orient all edges left-to-right and give each a capacity of 1.

2. Find a max flow from s to t using Ford-Fulkerson.

16.4. BIPARTITE MATCHING 89

3. Output the edges between L and R containing nonzero flow as the desired matching.

This finds a legal matching because edges from R to ¢ have capacity 1, so the flow can’t use two
edges into the same node, and similarly the edges from s to L have capacity 1, so you can’t have
flow on two edges leaving the same node in L. It’s a mazimum matching because any matching
gives you a flow of the same value: just connect s to the heads of those edges and connect the tails
of those edges to t. (So if there was a better matching, we wouldn’t be at a maximum flow).

What about the number of iterations of path-finding? This is at most the number of edges in the
matching since each augmenting path gives us one new edge.

Let’s run the algorithm on the above example. Notice a neat fact: say we start by matching A to
1 and C to 3. These are bad choices, but the augmenting path automatically undoes them as it
improves the flow!

Matchings come up in many different problems like matching up suppliers to customers, or cell-
phones to cell-stations when you have overlapping cells. They are also a basic part of other
algorithmic problems.

Lecture 17

Network Flow 11

17.1 Overview

The Ford-Fulkerson algorithm discussed in the last class takes time O(F'(n + m)), where F' is the
value of the maximum flow, when all capacities are integral. This is fine if all edge capacities
are small, but if they are large numbers written in binary then this could even be exponentially
large in the description size of the problem. In this lecture we examine some improvements to the
Ford-Fulkerson algorithm that produce much better (polynomial) running times. We then consider
a generalization of max-flow called the min-cost max flow problem. Specific topics covered include:

e Edmonds-Karp Algorithm #1
e Edmonds-Karp Algorithm #2
e Further improvements

e Min-cost max flow

17.2 Network flow recap

Recall that in the network flow problem we are given a directed graph G, a source s, and a sink ¢.
Each edge (u,v) has some capacity c(u,v), and our goal is to find the maximum flow possible from
s tot.

Last time we looked at the Ford-Fulkerson algorithm, which we used to prove the maxflow-mincut
theorem, as well as the integral flow theorem. The Ford-Fulkerson algorithm is a greedy algorithm:
we find a path from s to t of positive capacity and we push as much flow as we can on it (saturating
at least one edge on the path). We then describe the capacities left over in a “residual graph” and
repeat the process, continuing until there are no more paths of positive residual capacity left
between s and t. Remember, one of the key but subtle points here is how we define the residual
graph: if we push f units of flow on an edge (u,v), then the residual capacity of (u, v) goes down by
f but also the residual capacity of (v,u) goes up by f (since pushing flow in the opposite direction
is the same as reducing the flow in the forward direction). We then proved that this in fact finds
the maximum flow.

90

17.3. EDMONDS-KARP #1 91

Assuming capacities are integers, the basic Ford-Fulkerson algorithm could make up to F' iterations,
where F' is the value of the maximum flow. Each iteration takes O(m) time to find a path using
DFS or BFS and to compute the residual graph. (To reduce notation, let’s assume we have pre-
processed the graph to delete any disconnected parts so that m > n —1.) So, the overall total time
is O(mF).

This is fine if F' is small, like in the case of bipartite matching (where F' < n). However, it’s not
good if capacities are in binary and F' could be very large. In fact, it’s not hard to construct an
example where a series of bad choices of which path to augment on could make the algorithm take
a very long time: see Figure 17.1.

Figure 17.1: A bad case for Ford-Fulkerson. Starting with the graph on the left, we choose the path
s-a-b-t, producing the residual graph shown in the middle. We then choose the path s-b-a-t, producing
the residual graph on the right, and so on.

Can anyone think of some ideas on how we could speed up the algorithm? Here are two we can
prove something about.

17.3 Edmonds-Karp #1

Edmonds-Karp #1 is probably the most natural idea that one could think of. Instead of picking
an arbitrary path in the residual graph, let’s pick the one of largest capacity (we called this the
“maximum bottleneck path” a few lectures ago).

Claim 17.1 In a graph with mazimum s-t flow F, there must exist a path from s to t with capacity
at least F'/m.

Can anyone think of a proof?

Proof: Suppose we delete all edges of capacity less than F'/m. This can’t disconnect ¢ from s since
if it did we would have produced a cut of value less than F. So, the graph left over must have a
path from s to ¢, and since all edges on it have capacity at least F//m, the path itself has capacity
at least F'//m. N

Claim 17.2 Edmonds-Karp #1 makes at most O(mlog F') iterations.

Proof: By Claim 17.1, each iteration adds least a 1/m fraction of the “flow still to go” (the
maximum flow in the current residual graph) to the flow found so far. Or, equivalently, after
each iteration, the “flow still to go” gets reduced by a (1 — 1/m) factor. So, the question about
number of iterations just boils down to: given some number F', how many times can you remove a

17.4. EDMONDS-KARP #2 92

1/m fraction of the amount remaining until you get down below 1 (which means you are at zero
since everything is integral)? Mathematically, for what number x do we have F'(1 — 1/m)* < 17
Notice that (1 —1/m)™ is approximately (and always less than) 1/e. So, x = mIn F' is sufficient:
Fl—-1/m)*<F(1/e)*F=1. n

Now, remember we can find the maximum bottleneck path in time O(mlogn), so the overall time
used is O(m?lognlog F). You can actually get rid of the “logn” by being a little tricky, bringing
this down to O(m?log F').!

So, using this strategy, the dependence on F' has gone from linear to logarithmic. In particular, this
means that even if edge capacities are large integers written in binary, running time is polynomial
in the number of bits in the description size of the input.

We might ask, though, can we remove dependence on F' completely? It turns out we can, using
the second Edmonds-Karp algorithm.

17.4 Edmonds-Karp #2

The Edmonds-Karp #2 algorithm works by always picking the shortest path in the residual graph
(the one with the fewest number of edges), rather than the path of maximum capacity. This sounds
a little funny but the claim is that by doing so, the algorithm makes at most mn iterations. So,
the running time is O(nm?) since we can use BFS in each iteration. The proof is pretty neat too.

Claim 17.3 Edmonds-Karp #2 makes at most mn iterations.

Proof: Let d be the distance from s to ¢t in the current residual graph. We’ll prove the result
by showing that (a) d never decreases, and (b) every m iterations, d has to increase by at least 1
(which can happen at most n times).

Let’s lay out G in levels according to a BFS from s. That is, nodes at level i are distance i away
from s, and ¢ is at level d. Now, keeping this layout fixed, let us observe the sequence of paths
found and residual graphs produced. Notice that so long as the paths found use only forward edges
in this layout, each iteration will cause at least one forward edge to be saturated and removed from
the residual graph, and it will add only backward edges. This means first of all that d does not
decrease, and secondly that so long as d has not changed (so the paths do use only forward edges),
at least one forward edge in this layout gets removed. We can remove forward edges at most m
times, so within m iterations either ¢ becomes disconnected (and d = o0) or else we must have
used a non-forward edge, implying that d has gone up by 1. We can then re-layout the current
residual graph and apply the same argument again, showing that the distance between s and ¢
never decreases, and there can be a gap of size at most m between successive increases.

!This works as follows. First, let’s find the largest power of 2 (let’s call it ¢ = 2%) such that there exists a path
from s to t in G of capacity at least c. We can do this in time O(mlog F') by guessing and doubling (starting with
c = 1, throw out all edges of capacity less than ¢, and use DFS to check if there is a path from s to t; if a path exists,
then double the value of ¢ and repeat). Now, instead of looking for mazimum capacity paths in the Edmonds-Karp
algorithm, we just look for s-t paths of residual capacity > c. The advantage of this is we can do this in linear time
with DFS. If no such path exists, divide ¢ by 2 and try again. The result is we are always finding a path that is
within a factor of 2 of having the maximum capacity (so the bound in Claim 17.2 still holds), but now it only takes
us O(m) time per iteration rather than O(mlogn).

17.5. FURTHER DISCUSSION: DINIC AND MPM 93

Since the distance between s and t can increase at most n times, this implies that in total we have
at most nm iterations. N

17.5 Further discussion: Dinic and MPM

Can we do this a little faster? (We may skip this depending on time, and in any case the details
here are not so important for this course, but the high level idea is nice.)

The previous algorithm used O(mn) iterations at O(m) time each for O(m?n) time total. We'll
now see how we can reduce to O(mn?) time and finally to time O(n?). Here is the idea: given the
current BFS layout used in the Edmonds-Karp argument (also called the “level graph”), we’ll try
in O(n?) time all at once to find the maximum flow that only uses forward edges. This is sometimes
called a “blocking flow”. Just as in the analysis above, such a flow guarantees that when we take
the residual graph, there is no longer an augmenting path using only forward edges and so the
distance to ¢ will have gone up by 1. So, there will be at most n iterations for a total time of O(n?).

To describe the algorithm, define the capacity of a vertex v as c¢(v) = minc;,(v), cout(v)], where
¢in(v) is the sum of capacities of the in-edges to v and ¢,y (v) is the sum of capacities of the
out-edges from v. The algorithm is now as follows:

1. In O(m) time, create the level graph Gje,e; which is a BFS layout from s containing only the
forward edges, where we then remove any nodes that can’t reach ¢ using these edges (e.g., by
doing a backwards BFS from ¢ and removing unmarked nodes). Compute the capacities of
all nodes, considering just edges in Gjeye;-

2. Find the vertex v of minimum capacity c. If it’s zero, that’s great: we can remove v and
incident edges, updating capacities of neighboring nodes.

3. If ¢ is not zero, then we greedily pull ¢ units of flow from s to v, and then push that flow
along to t. We then update the capacities, delete v and repeat. Unfortunately, this seems
like just another version of the original problem! But, there are two points here:

(a) Because v had minimum capacity, we can do the pulling and pushing in any greedy
way and we won’t get stuck. E.g., we can do a BFS backward from v, pulling the flow
level-by-level, so we never examine any edge twice (do an example here), and then a
separate BFS forward from v doing the same thing to push the ¢ units forward to .
This right away gives us an O(mn) algorithm for saturating the level graph (O(m) per
node, n nodes), for an overall running time of O(mn?). So, we're half-way there.

(b) To improve the running time further, the way we will do the BFS is to examine the in-
edges (or out-edges) one at a time, fully saturating the edge before going on to the next
one. This means we can allocate our time into two parts: (a) time spent pushing/pulling
through edges that get saturated, and (b) time spent on edges that we didn’t quite
saturate (at most one of these per node). In the BFS we only take time O(n) on type-b
operations since we do at most one of these per vertex. We may spend more time on
type-a operations, but those result in deleting the edge, so the edge won’t be used again
in the current level graph. So over all vertices v used in this process, the total time of
these type-a operations is O(m). That means we can saturate the level graph in time

O(n? +m) = O(n?).

17.6. MIN-COST MATCHINGS, MIN-COST MAX FLOWS 94

Our running time to saturate the level graph is O(n? + m) = O(n?). Once we've saturated the
level graph, we recompute it (in O(m) time), and re-solve. The total time is O(n?).

By the way, even this is not the best running time known: the currently best algorithms have
performance of almost O(mn).

17.6 Min-cost Matchings, Min-cost Max Flows

We talked about the problem of assigning groups to time-slots where each group had a list of
acceptable versus unacceptable slots. A natural generalization is to ask: what about preferences?
E.g, maybe group A prefers slot 1 so it costs only $1 to match to there, their second choice is slot
2 s0 it costs us $2 to match the group here, and it can’t make slot 3 so it costs $infinity to match
the group to there. And, so on with the other groups. Then we could ask for the minimum cost
perfect matching. This is a perfect matching that, out of all perfect matchings, has the least total
cost.

The generalization of this problem to flows is called the min-cost maz flow problem. Formally, the
min-cost max flow problem is defined as follows. We are given a graph G where each edge has a
cost w(e) in as well as a capacity c(e). The cost of a flow is the sum over all edges of the positive
flow on that edge times the cost of the edge. That is,
cost(f) =Y w(e)f*(e),
e

where fT(e) = max[f(e),0]. Our goal is to find, out of all possible maximum flows, the one with
the least total cost. We can have negative costs (or benefits) on edges too, but let’s assume just
for simplicity that the graph has no negative-cost cycles. (Otherwise, the min-cost max flow will
have little disconnected cycles in it; one can solve the problem without this assumption, but it’s
conceptually easier with it.)

Min-cost max flow is more general than plain max flow so it can model more things. For example,
it can model the min-cost matching problem described above.

There are several ways to solve the min-cost max-flow problem. One way is we can run Ford-
Fulkerson, where each time we choose the least cost path from s to t. In other words, we find the
shortest path but using the costs as distances. To do this correctly, when we add a back-edge to
some edge e into the residual graph, we give it a cost of —w(e), representing that we get our money
back if we undo the flow on it. So, this procedure will create residual graphs with negative-weight
edges, but we can still find shortest paths in them using the Bellman-Ford algorithm.

We can argue correctness for this procedure as follows. Remember that we assumed the initial
graph G had no negative-cost cycles. Now, even though each augmenting path might add new
negative-cost edges, it will never create a negative-cost cycle in the residual graph. That is because
if it did, say containing some back-edge (v,u), that means the path using (u,v) wasn’t really
shortest since a better way to get from u to v would have been to travel around the cycle instead.
So, this implies that the final flow f found has the property that G has no negative-cost cycles
either. This means that f is optimal: if g was a maximum flow of lower cost, then g — f is a legal
circulation in G (a flow satisfying flow-in = flow-out at all nodes including s and t) with negative
cost, which means it would have to contain a negative-cost cycle, a contradiction.

The running time for this algorithm is similar to Ford-Fulkerson, except using Bellman-Ford instead
of Dijkstra. It is possible to speed it up, but we won’t discuss that in this course.

Lecture 18

Linear Programming

18.1 Overview

In this lecture we describe a very general problem called linear programming that can be used to
express a wide variety of different kinds of problems. We can use algorithms for linear program-
ming to solve the max-flow problem, solve the min-cost max-flow problem, find minimax-optimal
strategies in games, and many other things. We will primarily discuss the setting and how to code
up various problems as linear programs At the end, we will briefly describe some of the algorithms
for solving linear programming problems. Specific topics include:

e The definition of linear programming and simple examples.
e Using linear programming to solve max flow and min-cost max flow.
e Using linear programming to solve for minimax-optimal strategies in games.

e Algorithms for linear programming.

18.2 Introduction

In the last two lectures we looked at:

— Bipartite matching: given a bipartite graph, find the largest set of edges with no endpoints
in common.

— Network flow (more general than bipartite matching).

— Min-Cost Max-flow (even more general than plain max flow).

Today, we’ll look at something even more general that we can solve algorithmically: linear pro-
gramming. (Except we won’t necessarily be able to get integer solutions, even when the specifi-
cation of the problem is integral).

Linear Programming is important because it is so expressive: many, many problems can be coded
up as linear programs (LPs). This especially includes problems of allocating resources and business

95

18.3. DEFINITION OF LINEAR PROGRAMMING 96

supply-chain applications. In business schools and Operations Research departments there are
entire courses devoted to linear programming. We’re only going to have time for 1 lecture. So, we
will just have time to say what they are, and give examples of encoding problems as LPs. We will
only say a tiny bit about algorithms for solving them.

Before defining the problem, let’s motivate it with an example:

Example: There are 168 hours in a week. Say we want to allocate our time between classes and
studying (S), fun activities and going to parties (P), and everything else (E) (eating, sleeping,
taking showers, etc). Suppose that to survive we need to spend at least 56 hours on E (8
hours/day). To maintain sanity we need P + FE > 70. To pass our courses, we need S > 60,
but more if don’t sleep enough or spend too much time partying: 25 + E — 3P > 150. (E.g.,
if don’t go to parties at all then this isn’t a problem, but if we spend more time on P then
need to sleep more or study more).

Q1: Can we do this? Formally, is there a feasible solution?
A: Yes. For instance, one feasible solution is: § = 80, P = 20, F = 68.

Q2: Suppose our notion of happiness is expressed by 2P + E. What is a feasible solution such that
this is maximized? The formula “2P + E” is called an objective function.

The above is an example of a linear program. What makes it linear is that all our constraints are
linear inequalities in our variables. E.g., 25 + F — 3P > 150. In addition, our objective function
is also linear. We’re not allowed things like requiring SE > 100, since this wouldn’t be a linear
inequality.

18.3 Definition of Linear Programming

More formally, a linear programming problem is specified as follows.

Given:

e n variables x1,...,Ty.

e m linear inequalities in these variables (equalities OK too0).

E.g., 3z +429 <6,0 <z < 3, ete.
e We may also have a linear objective function. E.g., 2x1 + 3z5 + x3.

Goal:

e Find values for the z;’s that satisfy the constraints and maximize the objective. (In the
“feasibility problem” there is no objective function: we just want to satisfy the constraints.)

18.4. MODELING PROBLEMS AS LINEAR PROGRAMS 97

For instance, let’s write out our time allocation problem this way.

Variables: S, P, E.

Objective: maximize 2P + F, subject to

Constraints: S+P+FE = 168
E > 56
S > 60
25+ FE—-3P > 150
P+E > 170
P >0 (can’t spend negative time partying)

18.4 Modeling problems as Linear Programs

Here is a typical Operations-Research kind of problem (stolen from Mike Trick’s course notes):
Suppose you have 4 production plants for making cars. Each works a little differently in terms of
labor needed, materials, and pollution produced per car:

labor materials pollution
plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 b} 6 7

Suppose we need to produce at least 400 cars at plant 3 according to a labor agreement. We have
3300 hours of labor and 4000 units of material available. We are allowed to produce 12000 units of
pollution, and we want to maximize the number of cars produced. How can we model this?

To model a problem like this, it helps to ask the following three questions in order: (1) what are
the variables, (2) what is our objective in terms of these variables, and (3) what are the constaints.
Let’s go through these questions for this problem.

1. What are the variables? 1, x9,x3, x4, where x; denotes the number of cars at plant i.
2. What is our objective? maximize x1 + o + T3 + 4.

3. What are the constraints?

x; > 0 (for all i)
xr3 > 400
221 + 3xo + 43 + 524 < 3300
3x1 +4xo + bry + 6x4 < 4000
1521 + 1029 + 923 + 724 < 12000

Note that we are not guaranteed the solution produced by linear programming will be integral.
For problems where the numbers we are solving for are large (like here), it is usually not a very big
deal because you can just round them down to get an almost-optimal solution. However, we will
see problems later where it ¢s a very big deal.

18.5. MODELING NETWORK FLOW 98

18.5 Modeling Network Flow

We can model the max flow problem as a linear program too.

Variables: Set up one variable z,, for each edge (u,v). Let’s just represent the positive flow since
it will be a little easier with fewer constraints.

Objective: Maximize Y., Tyt — Y., Tty (maximize the flow into ¢ minus any flow out of t)
Constraints:
— For all edges (u,v), 0 < x4y < ¢(u,v). (capacity constraints)

— For all v & {s,t}, >, Tup = D, Tou- (flow conservation)

For instance, consider the example from the network-flow lecture:

In this case, our LP is: maximize x. + x4 subject to the constraints:

0< 256 <4,0< x4 <3, ete.

Tsq = Tacy Tsb + Teh = Toe + Tbdy Tac T Toe = Teb + Lety Tod = Tit-

How about min cost max flow? We can do this in two different ways. One way is to first
solve for the maximum flow f, ignoring costs. Then, add a constraint that flow must equal f, and
subject to that constraint (plus the original capacity and flow conservation constraints), minimize
the linear cost function

Z w(U, V) Ty,

(u,v)ER

where w(u,v) is the cost of edge (u,v). Alternatively, you can solve this all in one step by adding
an edge of infinite capacity and very negative cost from ¢ to s, and then just minimizing cost (which
will automatically maximize flow).

18.6 2-Player Zero-Sum Games

Recall back to homework 1, we looked at a 2-player zero-sum game. We had Alice hiding a nickel
or quarter behind her back and Bob guessing, and then based on whether the guess was right or
wrong, some money changed hands. This is called a “zero-sum game” because no money is entering
or leaving the system (it’s all going between Alice and Bob).

18.6. 2-PLAYER ZERO-SUM GAMES 99

A Minimax Optimal strategy for a player is a (possibly randomized) strategy with the best
guarantee on its expected gain over strategies the opponent could play in response — i.e., it is the
strategy you would want to play if you imagine that your opponent knows you well.

Here is another game: Suppose a kicker is shooting a penalty kick against a goalie who is a bit
weaker on one side. Let’s say the kicker can kick left or right, the goalie can dive left or right, and
the payoff matrix for the kicker (the chance of getting a goal) looks as follows:

Goalie

H left ‘ right ‘

left 0 1
right 1 0.5

Kicker ‘

Notice that even though the goalie is weaker on the right, the minimax optimal strategy for the
kicker is not to always kick to the right since a goalie who knows the kicker well could then stop
half the shots. Instead, the minimax optimal strategy for the kicker is to kick right with probability
2/3 and to kick left with probability 1/3. This guarantees an expected gain of 2/3 no matter how
the goalie decides to dive.

How about solving an n by n game? For instance, perhaps a game like this:

20 —-10 5
5 10 -10
-5 0 10

Let’s see if we can use linear programming to compute a minimax optimal strategy (say, for the
row player). Assume we are given as input an array M where m;; represents the payoff to the row
player when the row player plays ¢ and the column player plays j.

Informally, we want the variables to be the things we want to figure out, which in this case are
the probabilities to put on our different choices pi,...,p,. These have to form a legal probability
distribution, and we can describe this using linear inequalities: namely, p1+...+p, =1 and p; > 0
for all 4.

Our goal is to maximize the worst case (minimum), over all columns our opponent can play, of our
expected gain. This is a little confusing because we are maximizing a minimum. However, we can
use a trick: we will add one new variable v (representing the minimum), put in constraints that
our expected gain has to be at least v for every column, and then define our objective to be to
maximize v. Putting this all together we have:

Variables: pq,...,p, and v.
Objective: Maximize v.
Constraints:

e p;, >0 forall i, and Y, p; =1. (the p; form a probability distribution)

e for all columns j, we have), pim;; > v.

18.7. ALGORITHMS FOR LINEAR PROGRAMMING 100

18.7 Algorithms for Linear Programming

How can we solve linear programs? The standard algorithm for solving LPs is the Simplex Algo-
rithm, developed in the 1940s. It’s not guaranteed to run in polynomial time, and you can come up
with bad examples for it, but in general the algorithm runs pretty fast. Only much later in 1980
was it shown that linear programming could be done in polynomial time by something called the
Ellipsoid Algorithm (but it tends to be fairly slow in practice). Later on, a faster polynomial-time
algorithm called Karmarkar’s Algorithm was developed, which is competitive with Simplex. There
are many commercial LP packages, for instance LINDO, CPLEX, Solver (in Excel) and others.

We won’t have time to describe any of these algorithms in detail. Instead, we will just give some
intuition and the high-level idea of how they work by viewing linear programming as a geometrical
problem.

Think of an n-dimensional space with one coordinate per variable. A solution is a point in this
space. An inequality, like z1 +z2 < 6 is saying that we need the solution to be on a specified side of
a certain hyperplane. The feasible region is the convex region in space defined by these constraints.
Then we want to find the feasible point that is farthest in the “objective” direction.

Let’s go back to our first example with S, P, and E. To make this easier to draw, we can use our
first constraint that S+ P+ E = 168 to replace S with 168 — P — E. This means we can just draw
in 2 dimensions, P and E. See Figure 18.1.

(56 26) (88.5,19.5)
////// e 7///// //////// o

///%

N

‘ &\ \i\

\ «\S\\\\\\\;&\\
.

\\\\\i
W
\\\\‘

\
.
8
&\\Q\\ \
AR

\
DAL

186

a1
(<2}
~
o
=
=
o
(o9}

Figure 18.1: Feasible region for our time-planning problem. The constraints are: F > 56; P+ E > 70;
P >0; S > 60 which means 168 — P — E > 60 or P+ E < 108; and finally 25 — 3P 4+ E > 150 which
means 2(168 — P — F) — 3P + E > 150 or 5P + FE < 186.

We can see from the figure that for the objective of maximizing P, the optimum happens at F =
56, P = 26. For the objective of maximizing 2P + E, the optimum happens at F = 88.5, P = 19.5.

We can use this geometric view to motivate the algorithms.

The Simplex Algorithm: The earliest and most common algorithm in use is called the Simplex
method. The idea is to start at some “corner” of the feasible region (to make this easier, we can add
in so-called “slack variables” that will drop out when we do our optimization). Then we repeatedly
do the following step: look at all neighboring corners of our current position and go to the best one
(the one for which the objective function is greatest) if it is better than our current position. Stop
when we get to a corner where no neighbor has a higher objective value than we currently have.

18.7. ALGORITHMS FOR LINEAR PROGRAMMING 101

The key fact here is that (a) since the objective is linear, the optimal solution will be at a corner (or
maybe multiple corners). Furthermore, (b) there are no local maxima: if you're not optimal, then
some neighbor of you must have a strictly larger objective value than you have. That’s because the
feasible region is convez. So, the Simplex method is guaranteed to halt at the best solution. The
problem is that it is possible for there to be an exponential number of corners and it is possible for
Simplex to take an exponential number of steps to converge. But, in practice this usually works
well.

The Ellipsoid Algorithm: The Ellipsoid Algorithm was invented by Khachiyan in 1980 in
Russia.

This algorithms solves just the “feasibility problem,” but you can then do binary search with the
objective function to solve the optimization problem. The idea is to start with a big ellipse (called
an ellipsoid in higher dimensions) that we can be sure contains the feasible region. Then, try the
center of the ellipse to see if it violates any constraints. If not, you’re done. If it does, then look at
some constraint violated. So we know the solution (if any) is contained in the remaining at-most-
half-ellipse. Now, find a new smaller ellipse that contains that half of our initial ellipse. We then
repeat with the new smaller ellipse. One can show that in each step, you can always create a new
smaller ellipse whose volume is smaller, by at least a (1 — 1/n) factor, than the original ellipse.
So, every n steps, the volume has dropped by about a factor of 1/e. One can then show that if
you ever get too small a volume, as a function of the number of bits used in the coefficients of the
constraints, then that means there is no solution after all.

One nice thing about the Ellipsoid Algorithm is you just need to tell if the current solution violates
any constraints or not, and if so, to produce one. You don’t need to explicitly write them all down.
There are some problems that you can write as a linear program with an exponential number
of constraints if you had to write them down explicitly, but where there is an fast algorithm to
determine if a proposed solution violates any constraints and if so to produce one. For these kinds
of problems, the Ellipsoid Algorithm is a good one.

Karmarkar’s Algorithm: Karmarkar’s Algorithms sort of has aspects of both. It works with
feasible points but doesn’t go from corner to corner. Instead it moves inside the interior of the
feasible region. It was one of first of a whole class of so-called “interior-point” methods.

The development of better and better algorithms is a big ongoing area of research. In practice, for
all of these algorithms, you get a lot of mileage by using good data structures to speed up the time
needed for making each decision.

Lecture 19

NP-Completeness 1

19.1 Overview

In the past few lectures we have looked at increasingly more expressive problems that we were
able to solve using efficient algorithms. In this lecture we introduce a class of problems that are so
expressive — they are able to model any problem in an extremely large class called NP — that
we believe them to be intrinsically unsolvable by polynomial-time algorithms. These are the NP-
complete problems. What is particularly surprising about this class is that they include many
problems that at first glance appear to be quite benign. Specific topics in this lecture include:

e Reductions and expressiveness
e Informal definitions and the ESP problem
e Formal definitions: decision problems, P and NP.

e Circuit-SAT and 3-SAT

19.2 Introduction: Reduction and Expressiveness

In the last few lectures have seen a series of increasingly more expressive problems: network flow,
min cost max flow, and finally linear programming. These problems have the property that you
can code up a lot of different problems in their “language”. So, by solving these well, we end up
with important tools we can use to solve other problems.

To talk about this a little more precisely, it is helpful to make the following definitions:

Definition 19.1 We say that an algorithm runs in Polynomial Time if, for some constant c,
its running time is O(n®), where n is the size of the input.

In the above definition, “size of input” means “number of bits it takes to write the input down”.
So, to be precise, when defining a problem and asking whether or not a certain algorithm runs
in polynomial time, it is important to say how the input is given. For instance, the basic Ford-
Fulkerson algorithm is not a polynomial-time algorithm for network flow when edge capacities are
written in binary, but both of the Edmonds-Karp algorithms are polynomial-time.

102

19.3. OUR FIRST NP-COMPLETE PROBLEM: ESP 103

Definition 19.2 A Problem A is poly-time reducible to problem B (written as A <, B) if we
can solve problem A in polynomial time given a polynomial time black-box algorithm for problem
B. Problem A is poly-time equivalent to problem B (A=, B) if A <, B and B <, A.

For instance, we gave an efficient algorithm for Bipartite Matching by showing it was poly-time
reducible to Max Flow. Notice that it could be that A <, B and yet our fastest algorithm for
solving problem A might be slower than our fastest algorithm for solving problem B (because our
reduction might involve several calls to the algorithm for problem B, or might involve blowing up
the input size by a polynomial but still nontrivial amount).

19.3 Our first NP-Complete Problem: ESP

Many of the problems we would like to solve have the property that if someone handed us a
solution, we could at least check if the solution was correct. For instance the TRAVELING SALESMAN
PROBLEM asks: “Given a weighted graph G and an integer k, does GG have a tour that visits all
the vertices and has total length at most k77 We may not know how to find such a tour quickly,
but if someone gave such a tour to us, we could easily check if it satisfied the desired conditions
(visited all the vertices and had total length at most k). Similarly, for the 3-COLORING problem:
“Given a graph G, can vertices be assigned colors red, blue, and green so that no two neighbors
have the same color?” we don’t know of any polynomial-time algorithms for solving the problem
but we could easily check a proposed solution if someone gave one to us. The class of problems of
this type — namely, if the answer is YES, then there exists a polynomial-length proof that can be
checked in polynomial time — is called NP. (we define the class NP formally in Section 19.5).

Let’s consider now what would be a problem so expressive that if we could solve it, we could solve
any problem of this kind. Moreover, let’s see if we can define the problem so that it is of this kind
as well. Here is a natural candidate:

Definition 19.3 Existence of a verifiable Solution Problem (ESP): The input to this prob-
lem is in three parts. The first part is a program V (I, X), written in some standard programming
language, that has two arguments.! The second part is a string I intended as a first argument, and
the third part is a bound b written in unary (a string of b 1s). Question: does there exist a string
X, | X| <b, such that V(I,X) halts in at most b steps and outputs YES?

What we will show is that (a) ESP € NP and (b) for any problem) € NP we have Q <, ESP.
(Le., if you “had ESP” you could solve any problem in NP).2

Let’s begin with (a): why is ESP € NP? This is the reason for the bound b written in unary. If we
didn’t have b at all, then (since we can’t even in general tell if a program is ever going to halt) the
ESP question would not even be computable. However, with the bound b, if the answer is YES,
then there is a short proof (namely the string X) that we can check in polynomial time (just run
V (I, X) for b steps). The reason we ask for b to be written in unary is precisely so that this check
counts as being polynomial time: if b were in binary, then this check could take time exponential

"We use “V” for the program because we will think of it as a solution-verifier.

2Thanks to Manuel Blum for suggesting the acronym.

19.4. SEARCH VERSUS DECISION 104

in the number of bits in the input (much like Ford-Fulkerson is not a polynomial-time algorithm if
the capacities are written in binary).

Now, let’s go to (b): why is it the case that for any problem @ € NP we have @ <, ESP? Consider
some NP problem we might want to solve like 3-COLORING. We don’t know any fast ways of
solving that problem, but we can easily write a program V that given inputs I = G and X = an
assignment of colors to the vertices, verifies whether X indeed satisfies our requirements (uses at
most three colors and gives no two adjacent vertices the same color). Furthermore, this solution-
verifier is linear time. So, if we had an algorithm to solve the ESP, we could feed in this V', feed in
the graph G, feed in a bound b that is linear in the size of G, and solve the 3-COLORING problem.
Similarly, we could do this for the TRAVELING SALESMAN PROBLEM: program V, given inputs
I = (G, k) and X = a description of a tour through G, just verifies that the tour indeed has length
at most k and visits all the vertices. More generally, we can do this for any problem @ in NP. By
definition of NP, YES-instances of) must have short proofs that can be easily checked: i.e., they
must have such a solution-verifier V' that we can plug into our magic ESP algorithm.

Thus, we have shown that ESP satisfies both conditions (a) and (b) and therefore is NP-complete.

19.4 Search versus Decision

Technically, a polynomial-time algorithm for the ESP just tells us if a solution exists, but doesn’t
actually produce it. How could we use an algorithm that just answers the YES/NO question of
ESP to actually find a solution X7 If we can do this, then we can use it to actually find the coloring
or find the tour, not just smugly tell us that there is one. The problem of actually finding a solution
is often called the search version of the problem, as opposed to the decision version that just asks
whether or not the solution exists. That is, we are asking: can we reduce the search version of the
ESP to the decision version?

It turns out that in fact we can, by essentially performing binary search. In particular, once we
know that a solution X exists, we want to ask: “how about a solution whose first bit is 0?7” If, say,
the answer to that is YES, then we will ask: “how about a solution whose first two bits are 007”
If, say, the answer to that is NO (so there must exist a solution whose first two bits are 01) we
will then ask: “how about a solution whose first three bits are 010?” And so on. The key point is
that we can do this using a black-box algorithm for the decision version of ESP as follows. Given
a string of bits S, we define a new program Vs(I, X) = V(I, Xg) where Xg is the string X whose
first | S| bits are replaced by S. We then feed our magic ESP algorithm the program Vg instead of
V. This way, using at most b calls to the decision algorithm, we can solve the search problem too.

So, if we had a polynomial-time algorithm for the decision version of ESP, we immediately get a
polynomial-time algorithm for the search version of ESP. So, we can find the tour or coloring or
whatever.

The ESP seems pretty stylized. But we can now show that other simpler-looking problems have
the property that if you could solve them in polynomial-time, then you could solve the ESP in
polynomial time as well, so they too are NP-complete. That is, they are so expressive that if
we could solve them in polynomial-time, then it would mean that for any problem where we could
check a proposed solution efficiently, we could also find such a solution efficiently. Now, onto formal
definitions.

19.5. FORMAL DEFINITIONS: P, NP, AND NP-COMPLETENESS 105

19.5 Formal definitions: P, NP, and NP-Completeness

We will formally be considering decision problems: problems whose answer is YES or NO. E.g.,
“Does the given network have a flow of value at least k77 or “Does the given graph have a 3-
coloring?” For such problems, we can split all possible instances into two categories: YES-instances
(whose correct answer is YES) and NO-instances (whose correct answer is NO). We can also put
any ill-formed instances into the NO category. We now define the complexity classes P and NP.

Definition 19.4 P is the set of decision problems solvable in polynomial time.

E.g., the decision version of the network flow problem: “Given a network G and a flow value k,
does there exist a flow > k7" belongs to P.

Definition 19.5 NP is the set of decision problems that have polynomial-time verifiers. Specifi-
cially, problem @ is in NP if there is a polynomial-time algorithm V (I, X) such that:

e IfI is a YES-instance, then there exists X such that V(I,X) = YES.

e If I is a NO-instance, then for all X, V(I,X) = NO.

Furthermore, X should have length polynomial in size of I (since we are really only giving V' time
polynomial in the size of the instance, not the combined size of the instance and solution).

The second input X to the verifier V' is often called a witness. E.g., for 3-coloring, the witness that
an answer is YES is the coloring. For factoring, the witness that N has a factor between 2 and k
is a factor. For the TRAVELING SALESMAN PROBLEM: “Given a weighted graph GG and an integer
k, does G have a tour that visits all the vertices and has total length at most £7” the witness is
the tour. All these problems belong to NP. Of course, any problem in P is also in NP, since V'
could just ignore X and directly solve I. So, P C NP.

A huge open question in complexity theory is whether P = NP. It would be quite strange if they
were equal since that would mean that any problem for which a solution can be easily verified also
has the property that a solution can be easily found. So most people believe P # NP. But, it’s
very hard to prove that a fast algorithm for something does not exist. So, it’s still an open problem.

Definition 19.6 Problem @) is NP-complete if:

1. Q is in NP, and

2. For any other problem Q" in NP, Q' <, Q.

So if @) is NP-complete and you could solve () in polynomial time, you could solve any problem in
NP in polynomial time. If Q just satisfies part (2) of the definition, then it’s called NP-hard.

As we showed above, the ESP is NP-complete: it belongs to NP (that was the reason for including
the bound b in unary, so that running the verifier for b steps counts as being polynomial-time), and
we saw that we could use a polynomial-time algorithm for the ESP to solve any other problem in
NP in polynomial-time.

19.6. CIRCUIT-SAT AND 3-SAT 106

19.6 Circuit-SAT and 3-SAT

Though the ESP is NP-complete, it is a bit unweildy. We will now develop two more natural
problems that also are NP-complete: CIRCUIT-SAT and 3-SAT. Both of them will be obviously
in NP. To show they are NP-complete, we will show that ESP <, CIRCUIT-SAT, and then that
CIRCUIT-SAT <, 3-SAT. Notice that this is enough: it means that if you had a polynomial-time
algorithm for 3-SAT then you would also have a polynomial-time algorithm for CIRCUIT-SAT; and
if you had a polynomial-time algorithm for CIRCUIT-SAT, then you would also have a polynomial-
time algorithm for ESP; and we already know that if you have a polynomial-time algorithm for
ESP, you can solve any problem in NP in polynomial-time. In other words, to show that a problem
@ is NP-complete, we just need to show that Q" <, @ for some NP-complete problem @’ (plus
show that) € NP).

Definition 19.7 CIRCUIT-SAT: Given a circuit of NAND gates with a single output and no loops
(some of the inputs may be hardwired). Question: is there a setting of the inputs that causes the
circuit to output 17

Theorem 19.1 CIRCUIT-SAT is NP-complete.

Proof Sketch: First of all, CIRCUIT-SAT is clearly in NP, since you can just guess the input and
try it. To show it is NP-complete, we need to show that if we could solve this, then we could solve
the ESP. Say we are given V, I, and b, and want to tell if there exists X such that V(I, X) halts
and outputs YES within at most than b steps. Since we only care about running V' for b steps we
can assume it uses at most b bits of memory, including the space for its arguments. We will now use
the fact that one can construct a RAM with b bits of memory (including its stored program) and
a standard instruction set using only O(blogb) NAND gates and a clock. By unrolling this design
for b levels, we can remove loops and create a circuit that simulates what V' computes within b
time steps. We then hardwire the inputs corresponding to I and feed this into our CIRCUIT-SAT
solver. W

So, we now have one more NP-complete problem. Still, CIRCUIT-SAT looks complicated: we
weren’t expecting to be able to solve it in polynomial-time. However, now we will show that a
much simpler-looking problem, 3-SAT has the property that CIRCUIT-SAT <, 3-SAT.

Definition 19.8 3-SAT: Given: a CNF formula (AND of ORs) over n variables 1, ..., Ty, where
each clause has at most 3 variables in it. E.g., (x1V xo V T3) A (T2 V x3) A (1 V x3) A ... Goal:
find an assignment to the variables that satisfies the formula if one exists.

We’ll save the proof that 3-SAT is NP-complete for the next lecture, but before we end, here is
formally how we are going to do our reductions. Say we have some problem A that we know is
NP-complete. We want to show problem B is NP-complete too. Well, first we show B is in NP
but that is usually the easy part. The main thing we need to do is show that A <, B; that is, any
polynomial-time algorithm for B would give a polynomial-time algorithm for A. We will do this
through the following method called a many-one or Karp reduction:

Many-one (Karp) reduction from problem A to problem B: To reduce problem A to prob-
lem B we want a function f that takes arbitrary instances of A to instances of B such that:

19.6. CIRCUIT-SAT AND 3-SAT 107

1. if z is a YES-instance of A then f(z) is a YES-instance of B.
2. if x is a NO-instance of A then f(x) is a NO-instance of B.

3. f can be computed in polynomial time.

So, if we had an algorithm for B, and a function f with the above properties, we could using it to
solve A on any instance x by running it on f(x).

Lecture 20

NP-Completeness 11

20.1 Overview

In the last lecture, we defined the class NP and the notion of NP-completeness, and proved
that the Circuit-SAT problem is NP-complete. In this lecture we continue our discussion of NP-
Completeness, showing the following results:

e CIRCUIT-SAT <, 3-SAT (proving 3-SAT is NP-complete)
e 3-SAT <, CLIQUE (proving CLIQUE is NP-complete)

e NP-completeness of Independent Set and Vertex Cover

20.2 Introduction

Let us begin with a quick recap of our discussion in the last lecture. First of all, to be clear in our
terminology, a problem means something like 3-coloring or network flow, and an instance means a
specific instance of that problem: the graph to color, or the network and distinguished nodes s and
t we want to find the flow between. A decision problem is just a problem where each instance is
either a YES-instance or a NO-instance, and the goal is to decide which type your given instance
is. E.g., for 3-coloring, GG is a YES-instance if it has a 3-coloring and is a NO-instance if not. For
the Traveling Salesman Problem, an instance consists of a graph G together with an integer k, and
the pair (G, k) is a YES-instance iff G has a TSP tour of total length at most k.

We now define our key problem classes of interest.

P: The class of decision problems @ that have polynomial-time algorithms. @) € P if there exists
a polynomial-time algorithm A such that A(I) = YES iff I is a YES-instance of Q.

NP: The class of decision problems where at least the YES-instances have short proofs (that can
be checked in polynomial-time). @@ € NP if there exists a verifier V(I, X) such that:

e If] is a YES-instance, then there exists X such that V(I, X) = YES,
e If [is a NO-instance, then for all X, V (I, X) = NO,

and furthermore the length of X and the running time of V are polynomial in |I|.

108

20.2. INTRODUCTION 109

co-NP: vice-versa — there are short proofs for NO-instances. Specifically, Q € co-NP if there
exists a verifier V'(I, X) such that:

e If [is a YES-instance, for all X, V(I, X) = YES,
e If I is a NO-instance, then there exists X such that V(I, X) = NO,

and furthermore the length of X and the running time of V are polynomial in |I|.

For example, the problem CIRCUIT-EQUIVALENCE: “Given two circuits C1, Cs, do they com-
pute the same function?” is in co-NP, because if the answer is NO, then there is a short,
easily verified proof (an input x such that C(x) # Ca(x)).

A problem () is NP-complete if:

1. @ € NP, and

2. Any other ' in NP is polynomial-time reducible to @Q; that is, Q' <, Q.

If Q just satisfies (2) then it’s called NP-hard. Last time we showed that the following problem is
NP-complete:

Circuit-SAT: Given a circuit of NAND gates with a single output and no loops (some
of the inputs may be hardwired). Question: is there a setting of the inputs that causes
the circuit to output 17

Aside: we could define the search-version of a problem in NP as: “..and furthermore, if I is
a YES-instance, then produce X such that V(I,X) = YES.” If we can solve any NP-complete
decision problem in polynomial time then we can actually solve search-version of any problem
in NP in polynomial-time too. The reason is that if we can solve an NP-complete problem in
polynomial time, then we can solve the ESP in polynomial time, and we already saw how that
allows us to produce the X for any given verifier V.

Unfortunately, Circuit-SAT is a little unweildy. What’s especially interesting about NP-completeness
is not just that such problems exist, but that a lot of very innocuous-looking problems are NP-
complete. To show results of this form, we will first reduce Circuit-SAT to the much simpler-looking
3-SAT problem (i.e., show Circuit-SAT <, 3-SAT). Recall the definition of 3-SAT from last time:

Definition 20.1 3-SAT: Given: a CNF formula (AND of ORs) over n variables 1, ..., x,, where
each clause has at most 3 variables in it. Goal: find an assignment to the variables that satisfies
the formula if one exists.

Theorem 20.1 CIRCUIT-SAT <,, 3-SAT. Le., if we can solve 3-SAT in polynomial time, then
we can solve CIRCUIT-SAT in polynomial time (and thus all of NP).

Proof: We need to define a function f that converts instances C' of Circuit-SAT to instances of
3-SAT such that the formula f(C') produced is satisfiable iff the circuit C' had an input x such that
C(z) = 1. Moreover, f(C') should be computable in polynomial time, which among other things
means we cannot blow up the size of C' by more than a polynomial factor.

20.3. CLIQUE 110

First of all, let’s assume our input is given as a list of gates, where for each gate g; we are told
what its inputs are connected to. For example, such a list might look like: g1 = NAND(z1, z3);
g2 == NAND(g1,24); g3 = NAND(z1,1); g4 = NAND(g1,¢2); In addition we are told which
gate g, is the output of the circuit.

We will now compile this into an instance of 3-SAT as follows. We will make one variable for each
input x; of the circuit, and one for every gate ¢g;. We now write each NAND as a conjunction of 4
clauses. In particular, we just replace each statement of the form “y3 = NAND(y1,y2)” with:

(y1 OR y2 OR y3
(y1 OR 7, OR y3
AND (7; OR y2 OR y3
AND (7, OR 7, OR 73

if y1 = 0 and yo = 0 then we must have y3 = 1
if y1 =0 and y2 = 1 then we must have y3 = 1
if y1 =1 and yo = 0 then we must have y3 =1
if y1 =1 and y2 = 1 we must have y3 =0

o — — —

T

Finally, we add the clause (g,), requiring the circuit to output 1. In other words, we are asking:
is there an input to the circuit and a setting of all the gates such that the output of the circuit
is equal to 1, and each gate is doing what it’s supposed to? So, the 3-CNF formula produced is
satisfiable if and only if the circuit has a setting of inputs that causes it to output 1. The size of the
formula is linear in the size of the circuit. Moreover, the construction can be done in polynomial
(actually, linear) time. So, if we had a polynomial-time algorithm to solve 3-SAT, then we could
solve circuit-SAT in polynomial time too. N

Important note: Now that we know 3-SAT is NP-complete, in order to prove some other NP
problem @ is NP-complete, we just need to reduce 3-SAT to Q; i.e., to show that 3-SAT <, Q). In
particular, we want to construct a (polynomial-time computable) function f that converts instances
of 3-SAT to instances of @ that preserves the YES/NO answer. This means that if we could solve
Q efficiently then we could solve 3-SAT efficiently. Make sure you understand this reasoning — a
lot of people make the mistake of doing the reduction the other way around. Doing the reduction
the wrong way is just as much work but does not prove the result you want to prove!

20.3 CLIQUE

We will now use the fact that 3-SAT is NP-complete to prove that a natural graph problem called
the MAX-CLIQUE problem is NP-complete.

Definition 20.2 MAX-CLIQUE: Given a graph G, find the largest clique (set of nodes such that
all pairs in the set are neighbors). Decision problem: “Given G and integer k, does G contain a
clique of size > k?”

Note that MAX-CLIQUE is clearly in NP.
Theorem 20.2 MAXx-CLIQUE is NP-Complete.
Proof: We will reduce 3-SAT to MaX-CLIQUE. Specifically, given a 3-CNF formula F' of m clauses

over n variables, we construct a graph as follows. First, for each clause c of F' we create one node
for every assignment to variables in c¢ that satisfies c. E.g., say we have:

F:(wlvxg\/f4)/\(TgV%4)/\(T2\/Tg)/\...

20.4. INDEPENDENT SET AND VERTEX COVER 111

Then in this case we would create nodes like this:

(l’g = 0,3}4 = 0) (l’Q = 0,3}3 = 0)
(x3:0,x4:1) (xgzo,xgzl)
(l’3:1,$4:1) (l’2:1,$3:0)

Il :O,JEQ :0,3}4
I1 :O,wg = 1,(54
1 :O,JEQ = 1,3}4
1= 1,1‘2 :0,x4
1= 1,:E2 :0,3}4
I = 1,1‘2 = 1,(54
Tr1 = 1,:E2 = 1,3}4

8 8
I [

8

(0)
(0)
(1)
(0)
(1)
(0)
(1)

We then put an edge between two nodes if the partial assignments are consistent. Notice that
the maximum possible clique size is m because there are no edges between any two nodes that
correspond to the same clause c. Moreover, if the 3-SAT problem does have a satisfying assignment,
then in fact there is an m-clique (just pick some satisfying assignment and take the m nodes
consistent with that assignment). So, to prove that this reduction (with k& = m) is correct we need
to show that if there isn’t a satisfying assignment to F’ then the maximum clique in the graph has
size < m. We can argue this by looking at the contrapositive. Specifically, if the graph has an
m-~clique, then this clique must contain one node per clause c¢. So, just read off the assignment
given in the nodes of the clique: this by construction will satisfy all the clauses. So, we have shown
this graph has a clique of size m iff F' was satisfiable. Also, our reduction is polynomial time since
the graph produced has total size at most quadratic in the size of the formula F' (O(m) nodes,
O(m?) edges). Therefore MAX-CLIQUE is NP-complete. W

20.4 Independent Set and Vertex Cover

An Independent Set in a graph is a set of nodes no two of which have an edge. E.g., in a 7-cycle,
the largest independent set has size 3, and in the graph coloring problem, the set of nodes colored
red is an independent set. The INDEPENDENT SET problem is: given a graph G and an integer k,
does G have an independent set of size > k7

Theorem 20.3 INDEPENDENT SET is NP-complete.

Proof: We reduce from MAX-CLIQUE. Given an instance (G, k) of the MAX-CLIQUE problem, we
output the instance (H, k) of the INDEPENDENT SET problem where H is the complement of G.
That is, H has edge (u,v) iff G does not have edge (u,v). Then H has an independent set of size
k iff G has a k-clique. N

A vertex cover in a graph is a set of nodes such that every edge is incident to at least one of them.
For instance, if the graph represents rooms and corridors in a museum, then a vertex cover is a set
of rooms we can put security guards in such that every corridor is observed by at least one guard.
In this case we want the smallest cover possible. The VERTEX COVER problem is: given a graph
G and an integer k, does G have a vertex cover of size < k7?7

Theorem 20.4 VERTEX COVER is NP-complete.

20.5. BEYOND NP 112

Proof: If C is a vertex cover in a graph G with vertex set V', then V — C' is an independent set.
Also if S is an independent set, then V' — S is a vertex cover. So, the reduction from INDEPENDENT
SET to VERTEX COVER is very simple: given an instance (G, k) for INDEPENDENT SET, produce
the instance (G,n — k) for VERTEX COVER, where n = |V/|. In other words, to solve the question
“is there an independent set of size at least k” just solve the question “is there a vertex cover of
size < n — k7” So, VERTEX COVER is NP-Complete too. N

20.5 Beyond NP

As mentioned earlier, it is an open problem whether P # NP (though everyone believes they are
different). It is also an open problem whether NP # co-INP (though again, everyone believes they
are different). One can also define even more expressive classes. For instance, PSPACE is the class
of all problems solvable by an algorithm that uses a polynomial amount of memory. Any problem
in NP is also in PSPACE, because one way to solve the problem is to take the given instance I
and then simply run the verifier V/(I, X') on all possible proof strings X, halting with YES if any of
the runs outputs YES, and halting with NO otherwise. (Remember, we have a polynomial upper
bound on |X|, so this uses only a polynomial amount of space.) Similarly, any problem in co-NP
is also in PSPACE. Unfortunately, it is not even known for certain that P # PSPACE (though
all the classes mentioned above are believed to be different). One can also define classes that are
provably larger than P and NP. For instance, EXPtime is the class of all problems solvable in
time O(2") for some constant c. This class is known to strictly contain P. The class NEXPtime
is the class of all problems that have a verifier which runs in time O(2"") for some constant c. This
class is known to strictly contain NP. The class of all Turing-computable problems is known to
strictly contain all of the above, and some problems such as the Halting problem (given a program
A and an input x, determine whether or not .A(x) halts) are not even contained in that!

20.6 NP-Completeness summary

NP-complete problems have the dual property that they belong to NP and they capture the
essence of the entire class in that a polynomial-time algorithm to solve one of them would let you
solve anything in NP.

We proved that 3-SAT is NP-complete by reduction from CIRCUIT-SAT. Given a circuit C, we
showed how to compile it into a 3-CNF formula by using extra variables for each gate, such that
the formula produced is satisfiable if and only if there exists « such that C'(z) = 1. This means
that a polynomial-time algorithm for 3-SAT could solve any problem in NP in polynomial-time,
even factoring. Moreover, 3-SAT is a simple-looking enough problem that we can use it to show
that many other problems are NP-complete as well, including MAX-CLIQUE, INDEPENDENT SET,
and VERTEX COVER.

