15-451 Algorithms, Fall 2010

Homework # 1 Due: September 9, 2010

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each page. You will be handing each problem into a separate box in
lecture, and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments. You are required to typeset your homework.

Problems:

(25 pts) 1. Asymptotic Relationships. Each question is worth five points. Please formally
justify your answers using the definitions of o, O, © given in the lecture notes. Assume
that all functions are strictly positive, f(n) >0, ¢g(n) > 0.

(a) Formally prove that (}) € ©(n*) for all constants k.
(b) Suppose that f(n) = o(g(n)). Prove that f(n) ¢ ©(g(n)).

(c) Suppose that f(n) € ©(g(n)), can we conclude that f(n)?> € ©(g(n)?)? Justify
yOur answer.

(d) Suppose that f(n) € ©(g(n)), can we conclude that 2/(™ € ©(29(")? Justify your
answer.

(e) Harry Q. Bovik has just found a new matrix multiplication algorithm .4 with
running time 7'(n) = 97(n/3) + 8T (n/2) + n (T(1) = 1), Harry claims that A
runs in time O(n?) offering the following inductive proof.

For small values of k (say k < 4) we certainly have T(k) < 100k* so

T(k) € O(k?). Assume that T(k) € O(k?) for k < n, now by our assump-

tion we can conclude that T'(n/3) = O(n?) and T(n/2) = O(n?). There-

fore, 9T (n/3) + 8T (n/2) + n = O(n?) and in particular T'(n) = O(n?).
Is Harry’s proof correct? Is his claim correct? Briefly justify your answer.

(f) (Bonus: 5 pts) Suppose that f(n) € O(g(n)) and f(n) ¢ Q(g(n)), can we conclude
that f(n) = o(g(n))? Justify your answer.

(25 pts) 2. Is Ms.Perfect correct? Let py(z) denote the d-degree polynomial coz?+cizd 14 - -+
cqg in z. Given x and all the ¢;s from ¢ = 0 through d, Ms.Perfect wants to compute the
values of py(z) and “Lp,(z) at a single go, where = denotes the first-order derivative

with respect to x. To that effect, she uses the simple looking Algorithm 1 to obtain
pa(x) in vy and the derivative in v,.

(a) (20 pts) An analysis of the above algorithm shows that while v; indeed contains
the value of py(x), v does not contain its derivative. After all, Ms.Perfect is not
perfect. Your task is to prove that the algorithm above computes pg(x) in v; and
dd—xpdﬂ(x) in vy for some arbitrary cg,;. To prove, come up with expressions for
the variables vi, v%? and v, of the function compute which depend on m denoting
their respective values after m iterations of the loop for m > 0 (don’t forget to
take care of the base cases when coming up with expressions). These are also
known as loop-invariants. Show the values of these expressions for m = 0, 1.

Prove by induction with m = 2 as the base case.

1



Algorithm 1 Ms.Perfect’s algorithm
compute (given x and ¢;s from ¢ = 0 through d)
1: vy < 0, 094 < 0, vy + 0

: for ¢ = 0 through d do
V9l

V1 — .+

vy (vg +09) .2 + ¢;
end for
return (vq,v)

(b) (5 pts) Can you help Ms.Perfect compute her values by slightly modifying the
algorithm? You are allowed to perform at most two modifications which can
only involve a reordering of the statements inside the for loop or using a different
coefficient ¢; while keeping the structure of the statements unchanged. Assume
that c_y is equal to 0. At the end of the algorithm, v; should contain the value of
pa(z) and v should contain the value of -Lpy(z). You just need to mention the
modifications. You need not prove it correct.

(25 pts) 3. Recurrences. Solve the following recurrences, giving your answer in © notation. For
each of them, assume the base case T'(z) = 1 for x < 5 and lg is log base 2. Show your

work.
(a) (7 pts) T'(n) =2T(n — 1) 4 2™
(b) (5 pts) Tn) = 4T(n/5) + nlED.
(c¢) (5 pts) T(n) =nlgn+ 9T (n/3).
(d) 28 pts) T(n) = n¥4T(n'/*) + n.

(25 pts) 4. Jonsort

Jon has come up with an amazing new algorithm for sorting numbers he’s calling jon-
sort.

Jon’s new sorting algorithm is as follows:

Input: An unsorted list of numbers
Output: A sorted list of numbers in ascending order

1. FUNCTION jonsort(list A):

2 sorted_list = []

3 while length(A) > O:

4. subsection = []

5. subsection[0] = A[O]
6 remove A[O] from A
7
8

for i in O to length(A):



9.

10.
11.
12.
13.

if A[i] >= subsection[last]:
append A[i] to the end of subsection
remove A[i] from A
merge (subsection, sorted_list)
return sorted_list

For the merge function, if m is the size of the list before the subsection is removed
from it, assume that the merge function always takes m comparisons to merge the
subsection and the sorted list.

In other words, assume that the merge function takes the same number of comparisons
as the length of the list A as it was in line 3 of the pseudocode.

For example, consider the unsorted list [5,2,1,7]. Below is a chart designating the
state of the list, the subsection, and the sorted list after each iteration:

list subsection sorted_list
[(5,2,1,7] [] (]

[2,1] [5,7] (]

[2,1] (] [5,7]

[1] [2] [5,7]

[1] [] [2,5,7]

(] [1] [2,5,7]

(] (] [1,2,5,7]

(9 pts) Jon claims the algorithm is asymptotically faster than quicksort in the
worst case in terms of the number of comparisons. Is he correct? Provide an
ordering of elements that constitutes jonsort’s worst case input and prove that it is
the worst case. Additionally, generate a recurrence for the number of comparison’s
jonsort makes in the worst case and solve the recurrence for its asymptotic bound.

(15 pts) Jon is interested in the recurrence for the expected number of comparisons
of his algorithm on randomized input. Find a recurrence representing the expected
number of comparisons that jonsort makes. Present this recurrence in the simplest
form possible. If you can simplify summations, do so (you are not expected to
solve the recurrence, just to present it). Explain how you derived your recurrence.

(1 pts) Thus far, we have only been analyzing this algorithm in terms of the
number of comparisons made. Note that this algorithm, however, contains a lot
of insertions and deletions from a list. In what real world situations may this
algorithm be more practical than quicksort?



