15-451 Algorithms, Fall 2010

Homework # 5 due: Tuesday-Friday, November 9-12, 2010

Ground rules:

e This is an oral presentation assignment. You should work in groups of exactly three.
At some point before Monday, November 8 at 11:59pm your group should sign
up for a 1-hour time slot on the signup sheet on the course web page. By signing up
with fewer than three group members you are giving course staff permission to place
unpaired students in your group.

e Each person in the group must be able to present every problem. The TA /Professor
will select who presents which problem. The other group members may assist the
presenter.

e You are not required to hand anything in at your presentation, but you may if you
choose. If you do hand something in, it will be taken into consideration (in a non-
negative way) in the grading.

Problems:

(28 points) 1. Subset Sum is Hard Consider the following problem, called Subset Sum: Given a
set X = {z1,...,x,} of integers and an integer M, determine whether there exists a
subset S C X such that > ,cgx = M. In this problem you will prove that Subset
Sum is NP-Complete by reduction from one-in-three SAT. One in Three SAT is known
to be NP-Complete. The one-in-three SAT problem is a variant of 3-SAT. Similar to
3-SAT the input instance is a collection of clauses, and each clause contains exactly
three literals (either a variable or its negation). Unlike 3-SAT, however, we want to
determine if there is a assignment of the variables such that each clause has exactly
one true literal (equivalently exactly two false literals).

Consider the following reduction: Given a one-in-three SAT formula ¢ with clasues
Ci,...,C,, and variables x4, ..., x,, we build a Subset Sum instance as follows:

e Sct

m+n

M= 2"
=1

° Set
t 22m+2' 2: 22@'

iGP(xz.)
where P(z}) is the set of all clauses C; that contain the literal x;.

o Set A
a:f — 92m+2j | Z 92i
i€P(x])
where P(xf ) is the set of all clauses C; that contain the literal —z;

e Set
X ={at af, 2t al).


http://en.wikipedia.org/wiki/Subset_sum_problem
http://en.wikipedia.org/wiki/One-in-three_3SAT

()

Our final subset sum instance is
(X, M).
Suppose that we find a subset S C X such that

Zx:M.

€S

Use S to construct a satisfying assignment to ¢.

Suppose that we find a satisfying assignment z, ...,z to ¢. Using this satisfying
assignment show how to construct a subset S C X such that

ZIJ‘:M.

Tj es

What (if anything) do we still need to prove before we can conclude that Subset
Sum is NP-complete?

(28 points) 2. Graduation There is a list of requirements 7y, 7y, ..., 7,,, where each requirement r;
is of the form: “you must take at least k; courses from set S;”. A student may use the
same course to fulfill several requirements. For example, if one requirement stated that
a student must take at least one course from {A, B, C'}, another required at least one
course from {C, D, E}, and a third required at least one course from {A, F, G}, then
a student would only have to take A and C to graduate. Now, consider an incoming
freshman interested in finding the minimum number of courses that he (or she) needs
to take in order to graduate.

(a)

Prove that the problem faced by this freshman is NP-hard, even if each k; is equal
to 1. Specifically, consider the following decision problem: given n items labeled
1,2,...,n, given m subsets of these items S, S5s,...,S,, and given an integer k,
does there exist a set S of at most k items such that [S(.S;| > 1 for all S;. Prove
that this problem is NP-complete (also say why it is in NP).

Show how you could use a polynomial-time algorithm for the above decision prob-
lem to also solve the search-version of the problem (i.e., actually find a minimum-
sized set of courses to take).

We could define a fractional version of the graduation problem by imagining that
in each course taken, a student can elect to do a fraction of the work between
0.00 and 1.00, and that requirement r; now states “the sum of your fractions of
work in courses taken from set .S; must be at least k;” (courses not taken count
as 0). The student now wants to know the least total work needed to satisfy all
requirements and graduate. Show how this problem can be solved using linear
programming. Be sure to specify what the variables are, what the constraints are,
and what you are trying to minimize or maximize.

(28 points) 3. D’s Max Flow Algo

D’s Max Flow algorithm finds the max flow on any flow network, GG. In each phase, it
constructs a blocking flow on the level graph of the network (described in Alg. . It



then computes the residual graph resulting from the blocking flow, and repeats another
phase of the algorithm.

Alg[1] describes one phase. We traverse the level graph from source to sink in a depth-
first fashion, advancing whenever possible and keeping track of the path from s to the
current vertex. If we get all the way to ¢, we have found an augmenting path, and we
augment by that path. If we get to a vertex with no outgoing edges, we delete that
vertex (there is no path to ¢ through it) and retreat.

In the following, u denotes the vertex currently being visited and p is a path from s to
u.

Algorithm 1 Phase of D’s Max Flow Algo

e Initialize: Construct a new level graph Lg using s as the root. Set u := s and p := [s].
Go to Advance. (Note: The level graph Lg of G is the directed breadth-first search
graph of G with root s and with sideways and back edges deleted.)

e Advance: If there is no edge out of u, go to Retreat. Otherwise, let (u,v) be any
edge out of u. Set p := p.append(v) and u := v. If v # t then go to Advance. If v =t
then go to Augment.

e Retreat: If u = s then halt. Otherwise, delete u and all adjacent edges from Lg and
remove u from the end of p. Set u to be the last vertex on p. Go to Advance.

e Augment: Let A be the bottleneck capacity along path p. Augment by the path flow
along p of value A, adjusting residual capacities along p. Delete newly saturated edges.
Set u to be the last vertex on the path p reachable from s along unsaturated edges of p;
that is, the start vertex of the first newly saturated edge on p. Set p to be the portion
of p up to and including u. Go to Advance.

(a) Explain the complexity analysis for each part of one phase of the algorithm:
Initialize, Advance, Retreat, and Augment. (For example, how many times can
Advance be executed during one phase of the algorithm? How much total work
is done by Advance during one phase?)

(b) Explain the complexity analysis for the entire algorithm, including an upper
bound on the number of phases required to find the max flow.

(16 pts) 4. The Curveball: After your team present your solution to each of the above problems
we reserve the right to make small changes to the problem, and ask how the answers
would change. You will be expected to answer these questions on the fly. We are
not going to tell you what these variations are in advance, that would defeat the
purpose. Your best strategy is to make sure that everyone on your team understands
each problem and its solution. If you have a good understanding of the solution then
these variations should not be too difficult to answer.



